• Title/Summary/Keyword: Plate Forming

Search Result 436, Processing Time 0.026 seconds

Studies on the Forming Process for the Bipolar Plate of Fuel Cells

  • Jin, Chul-Kyu;Lee, Jun-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.175-181
    • /
    • 2018
  • Stamping process and rubber pad forming process were performed to manufacture the bipolar plate for fuel cells. For that, a vacuum die casting process and a semi-solid forming process wherein liquid-state materials were used were adopted. After preparing the blank with the stainless steel thin plate having a thickness of 0.1 mm, the bipolar plate channel was formed with the stamping process and rubber pad forming process. The depth of the bipolar plate channel prepared by the stamping method was 0.45 mm and the depth of the bipolar plate channel prepared by the rubber pad forming process was 0.41 mm. Meanwhile, with the vacuum die casting and semi solid forming, the bipolar plate having a channel depth of 0.3 mm, same as the size of the die, could be formed.

Study on Application of Flexible Forming Technology for Curved Plate Forming using Thick Plate (후판의 곡면 가공을 위한 가변성형기술 적용 연구)

  • Heo, S.C.;Seo, Y.H.;Park, J.W.;Lee, H.M.;Ku, T.W.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.122-125
    • /
    • 2008
  • Generally, in shipbuilding, large curved block components which have large curvature radius along various directions are used for huge ships such as LPG-vessel and oil tanker ships. Lots of the blocks are manufactured by line heating method which uses a heat source to bend the thick plate materials. The conventional forming process is entirely dependent on the experience of experts because it is done by manual method thus the curvatures and qualities are not uniform even for same part. However, it is hard to adopt the press forming process using die tool sets fur the manufacturing because of the characteristics of the industry that based on the small quantity and variety in the products. In this study, flexible forming technology using numbers of punches is investigated based on the simulation to substitute for the conventional forming method. Thick plate material model was applied to the proposed process to verify the feasibility for hull structure block forming process. The press forming processes were simulated by adopting the explicit-to-implicit sequential solution. Moreover, experiment of the flexible forming process was also conducted and its results were compared with that of simulation.

  • PDF

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

A Study on Two-Dimensional Forming of Ship Hull Plate by Geometrical Approach (곡가공 공정에서 기하학적 접근법에 의한 2차원 성형에 관한 연구)

  • Seong, Woo-Jae;Ahn, Jun-Su;Kim, Hyun-Uk;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.32-37
    • /
    • 2009
  • In shipyard, plate forming is widely used to form the ship hull plate in various shapes. Line heating method by using a flame torch is one of the major shipbuilding processes carried out by skilled workers. Since the forming characteristics depend upon their experiences in manual forming, there are much variations between products and difficulties in communication between engineers and workers. Hence, it needs to develop an automatic forming system which can not only reduce the working time and rework costs but also improve the working environment and hull forming productivity. One of the final goals of plate forming automation is to form a target shape from the initial plate automatically. For automated plate forming, it is required to determine where and how to heat on the plate. To realize this procedure, the inverse problem should be first solved and the effect of curvature shape formed at the heating path should be investigated. In this study, the inverse problem was solved by geometrical approach using the relationship between bending angle and radius of curvature of the curved shape. In addition, experiments of two-dimensional plate forming were performed with the distance-based method considering the curved bending with curvature. The result of the formed shape agreed considerably well with the target shape.

Tool Design and Numerical Verification for Thick Plate Forming of Hollow-Partitioned Steam Turbine Nozzle Stator (스팀 터빈용 중공 분할형 노즐 정익의 후판 성형을 위한 금형 설계 및 해석적 검증)

  • Kang, B.K.;Kwak, B.S.;Yoon, M.J.;Jeon, J.Y.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • As a stator for steam turbine diaphragm, hollow-type nozzle stator to substitute for conventional solid one is introduced in this study. This hollowed stator can be separated into two parts such as upper and lower plates with large and curved surface area. This study focuses on thick plate forming process for the upper plate of the hollow-partitioned nozzle stator. First, to reduce forming defects such as under-cut and localized thinning of the deformed plate, and to avoid tool interruption between forming punch and lower die, tool design including the position determination of forming surfaces is performed. Uni-axial tensile tests are carried out using SUS409L steel plate with initial thickness of 5.00mm, and plastic strain ratio (r-value) is also obtained. Due to the asymmetric curved configuration of the upper plate, it is hard to adopt a series of blank holder or draw-bead, so the initial plate during this thick plate forming experiences unstable and non-uniform contact. To easy this forming difficulty and find suitable tool geometry without sliding behavior of the workpiece in the die cavity, two geometric parameters with respect to each shoulder angle of the lower die and the upper punch are adopted. FE models with consideration of 21 combinations for the geometric parameters are built-up, and numerical simulations are performed. From the simulated and predicted results, it is shown that the geometric parameter combinations with ($30^{\circ}$, $90^{\circ}$) and ($45^{\circ}$, $90^{\circ}$) for the shoulder angle of the lower die and the upper punch are suitably applied to this upper plate forming of the hollow-partitioned nozzle stator used for the turbine diaphragm.

An efficient finite element analysis model for thermal plate forming in shipbuilding

  • S.L. Arun Kumar;R. Sharma;S.K. Bhattacharyya
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.367-384
    • /
    • 2023
  • Herein, we present the design and development of an efficient finite element analysis model for thermal plate forming in shipbuilding. Double curvature shells in the ship building industries are primarily formed through the thermal forming technique. Thermal forming involves heating of steel plates using heat sources like oxy-acetylene gas torch, laser, and induction heating, etc. The differential expansion and contraction across the plate thickness cause plastic deformation and bending of plates. Thermal forming is a complex forming technique as the plastic deformation and bending depends on many factors such as peak temperature, heating and cooling rate, depth of heated zone and many other secondary factors. In this work, we develop an efficient finite element analysis model for the thermo-mechanical analysis of thermal forming. Different simulations are reported to study the effect of various parameters affecting the process. Temperature dependent properties are used in the analysis and the finite element analysis model is used to identify the critical flame velocity to avoid recrystallization of plate material. A spring connected plate is modeled for structural analysis using spring elements and that helps in identifying the resultant shapes of various thermal forming patterns. Finally, detailed simulation results are reported to establish the efficacy, applicability and efficiency of the designed and developed finite element analysis model.

Compressive and Bending Behaviors of the Shielded Slot Plate Considering Forming Effect for Fuel Cell Application (성형 이력을 고려한 용융탄산염 연료전지용 쉴디드 슬롯 플레이트의 압축 및 굽힘 거동 분석)

  • Lee, C.W.;Yang, D.Y.;Kang, D.W.;Chang, I.G.;Lee, T.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.341-347
    • /
    • 2012
  • The metallic bipolar plates of the molten carbonate fuel cell(MCFC) are composed of shielded slot plates and a center-plate. The shielded slot plates support the center-plate and the membrane electrode assembly. Compressive forces are applied to the shielded slot plate in order to increase the contact area between shielded slot plates and the membrane electrode assembly (MEA). In the design of the shielded slot plate, it is necessary to predict the mechanical behavior of the shielded slot plate. The shielded slot plates are manufactured by a three-stage forming process consisting of slitting, preforming and the final forming process. The mechanical behavior of the shielded slot plate is largely affected by the forming process. In this study, the simulation of the three-stage forming process was used to predict the mechanical behavior of the shielded slot plate. The present simulation approach showed good agreements with the experimental results.

A Compatibility Study on Blank Support Structure for Large and Curved Thick Plate Forming (대곡면 후곡판 성형을 위한 블랭크 지지구조의 적합성 연구)

  • Lim, M.R.;Kwak, B.S.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.335-346
    • /
    • 2019
  • Thick plate forming is presented to manufacture a large and curved member of steam turbine diaphragm. Due to three-dimensional asymmetry of target geometry, it is hard to consistently keep the blank position in die cavity between forming punch and die. In order to relieve the position instability of the blank during the thick plate forming, a blank support structure is proposed to be composed of guide pins and linear bearing, and blank guide arm enlarged from both longitudinal ends of the thick blank. In this study, parametric investigations with regard to the geometric position and width of the blank guide arm are carried out. As main geometric parameters, 2 positions such as maximum curvature region and minimum one on a curved cross-section profile of the target shape are selected, and 14 widths of the blank guide arm are considered. Using 28 variable combinations, three-dimensional numerical simulations are performed to predict the appropriate range of the process parameters. The compatibility and validity of the blank support structure with the blank guide arm for the thick plate forming is verified through the thick plate forming experiments.

A Study on Forming Characteristics in Plate Type Cross Rolling Process (평판형 전조압연의 성형특성 연구)

  • Yoon D. J.;Lee G. A.;Lee N. K.;Choi S.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.329-332
    • /
    • 2005
  • Cross rolling process is one of incremental forming processes to form an axi-symmetric shaped metal component. It can be classified into two types according to the shape of dies, which are a drum type (roll type) and a plate type (straight type). It can also be classified into a wedge type and a ramp type processes according to deformation characteristics of a material. The ramp type die is applied to plate type cross rolling process in cold forming process for forming of teeth of gear or bolt, while the wedge type die is generally utilized to drum type and plate type cross rolling processes in hot forming process. A shape of the ramp type die is usually same as final shape of a product at every section of a progressing direction, while the shape of the wedge type die has different shapes in a progressing direction. In this paper, a rolling of neck part in a ball stud component has been carried out using the plate type cross rolling process with a ramp shaped die. Forming characteristics have been performed using finite element analysis in order to obtain a proper preform for the ramp type plate cross rolling process.

  • PDF