• 제목/요약/키워드: Plastid Transformation

검색결과 9건 처리시간 0.02초

Plastid Transformation in the Monocotyledonous Cereal Crop, Rice (Oryza sativa) and Transmission of Transgenes to Their Progeny

  • Lee, Sa Mi;Kang, Kyungsu;Chung, Hyunsup;Yoo, Soon Hee;Ming Xu, Xiang;Lee, Seung-Bum;Cheong, Jong-Joo;Daniell, Henry;Kim, Minkyun
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.401-410
    • /
    • 2006
  • The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastidexpressed green fluorescent protein (GFP) and aminoglycoside 3′-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.

Plastid Transformation of Soybean Suspension Cultures

  • Zhang, Xing-Hai;Archie R.Portis. Jr.;Jack M.Widholm
    • Journal of Plant Biotechnology
    • /
    • 제3권1호
    • /
    • pp.39-44
    • /
    • 2001
  • Plastid transformation was attempted with soybean [Glycine max (L.) Merr.] leaves and photoautotrophic and embryogenic cultures by particle bombardment using the transforming vector pZVII that carries the coding sequences for both subunits of Chlamydomonas reinhardtii Rubisco and a spectinomycin resistance gene (aadA). Spectinomycin resistant calli were selected from the bombarded leaves but the transgene was not present, indicating that the resistance was due to mutations. The Chlamydomonas rbcL and rbcS genes were shown to be site-specifically integrated into the plastid genome of the embryogenic cells with a very low transformation efficiency. None of the transformed embryogenic lines survived the plant regeneration process so no whole plants were recovered. This result does indicate that it should be possible to insert genes into the plastid genome of the important crop soybean if the overall methods are improved.

  • PDF

Improved plastid transformation efficiency in Scoparia dulcis L.

  • Kota, Srinivas;Hao, Qiang;Narra, Muralikrishna;Anumula, Vaishnavi;Rao, A.V;Hu, Zanmin;Abbagani, Sadanandam
    • Journal of Plant Biotechnology
    • /
    • 제46권4호
    • /
    • pp.323-330
    • /
    • 2019
  • The high expression level of industrial and metabolically important proteins in plants can be achieved by plastid transformation. The CaIA vector, a Capsicum-specific vector harboring aadA (spectinomycin resistance), is a selectable marker controlled by the PsbA promoter, and the terminator is flanked by the trnA and trnI regions of the inverted repeat (IR) region of the plastid. The CaIA vector can introduce foreign genes into the IR region of the plastid genome. The biolistic method was used for chloroplast transformation in Scoparia dulcis with leaf explants followed by antibiotic selection on regeneration medium. Transplastomes were successfully screened, and the transformation efficiency of 3 transgenic lines from 25 bombarded leaf explants was determined. Transplastomic lines were evaluated by PCR and Southern blotting for the confirmation of aadA insertion and its integration into the chloroplast genome. Seeds collected from transplastomes were analyzed on spectinomycin medium with wild types to determine genetic stability. The increased chloroplast transformation efficiency (3 transplastomic lines from 25 bombarded explants) would be useful for expressing therapeutically and industrially important genes in Scoparia dulcis L.

벼 색소체 형질전환을 이용한 글리포세이트 저항성 유전자 cp4-epsps의 발현 (Expression of the Glyphosate Resistant Gene, cp4-epsps, through Plastid Transformation in Rice (Oryza sativa L.))

  • 강경수;김민균
    • Journal of Plant Biotechnology
    • /
    • 제33권2호
    • /
    • pp.75-84
    • /
    • 2006
  • Heteroplasmic rice plastid transformant was generated using suspension cells as bombardment materials. PCR analyses confirmed incorporation of aadA and cp4-epsps genes into the rice plastid genome by homologous recombination events via the flanking sequences of the trnI and trnA. Transplastomic calli were actively proliferated when cultured on AAM2 medium supplemented with various concentrations (500-3000 mg/L) of streptomycin in dark condition, and transplastomic suspension cells showed resistance to nonselective herbicide, glyphosate. Through 'agarose pie selection' method, heteroplastomic calli, containing considerably high level of transplastome and expressing the CP4 EPSPS protein, were obtained. They were further regenerated to green shoots with healthy roots.

토마토 재분화 효율 향상 및 엽록체 형질전환 조건 (Effect of cultivar and ascorbic acid on in vitro shoot regeneration and development of bombardment-mediated plastid transformation of tomato (Lycopersicon esculentum))

  • 노경희;이기종;박종석;김종범;이승범;서석철
    • Journal of Plant Biotechnology
    • /
    • 제37권1호
    • /
    • pp.77-83
    • /
    • 2010
  • 국립원예특작과학원에서 분양받은 토마토 18계통을 공시하여 재분화가 잘되는 적정 품종을 탐색한 결과, 계통번호 2001-58에서의 재분화율이 93%로 양호하였다. 또한 식물체로의 재분화 과정에서 보여 지는 갈변현상과 phenolic compound에 의한 식물조직의 괴사현상을 막기 위하여 항산화제인 ascorbic acid와 cystein을 단용 또는 혼용으로 첨가한 후 토마토 재분화에 미치는 영향을 살펴 본 결과, ascorbic acid $200{\sim}300\;{\mu}M/L$ 처리구에서 줄기형성율 및 생체중이 증가되는 현상을 관찰할 수 있었다. 토마토 엽록체 형질전환체 선발을 위해 spectinomycin의 적정 농도를 살펴본 결과, 재분화배지에 spectinomycin 20~25 mg/L 농도가 첨가되어진 처리구에서 재분화가 거의 이루어지지 않았다. 토마토 엽록체 형질전환을 위해 토마토 엽록체 게놈 일부를 분리하여 염기서열을 분석하여 담배와 비교 분석한 결과, homology가 매우 높음을 알 수 있었다. Homologous recombination에 의한 엽록체 형질전환이 되기 위해서 분리한 토마토 엽록체 게놈 일부를 border sequence로 이용하였고, transient assay를 위해 GFP 유전자가 포함된 토마토 엽록체 형질전환용 운반체 pKRT22-AG를 제작하였다. Bombardment을 한 후 원형질체를 나출하여 공초점 현미경하에서 관찰한 결과 엽록체 내에서만 GFP가 발현됨을 알 수 있었으며, DNA 농도 $1\;{\mu}g$, $0.6\;{\mu}m$ gold particle 1 mg, target distance 9 cm 조건이 가장 좋았다.

안정적 감자 엽록체 형질전환 식물체 생산 (Production of stable chloroplast-transformed plants in potato (Solanum tuberosum L.))

  • 민성란;정원중;박지현;유재일;이정희;오광훈;정화지;유장렬
    • Journal of Plant Biotechnology
    • /
    • 제38권1호
    • /
    • pp.42-48
    • /
    • 2011
  • 고등식물의 엽록체 유전공학은 핵 형질전환과 비교해 볼때 여러 가지 독특한 장점을 가진다. 높은 transgene 발현율, 상동 재조합에 의한 site-specific transgene의 삽입으로 인해 유전자의 position effect가 없으며, 단일 형질전환으로 동시에 여러 유전자의 도입이 가능하고 모계 유전으로 인해 화분 방출 위험을 감소시킬 수 있다. 담배 specific한 pCtVG (trnI-Prrn-aadA-mgfp-TpsbA-trnA) 벡터를 이용하여 안정적인 감자 엽록체 형질전환 시스템을 개발하였다. 감자 엽록체 게놈으로 외래유전자의 삽입과 homoplasmic level은 PCR과 Southern blot 분석으로 확인하였다. Northern과 immunoblot 분석 및 GFP fluorescence imaging을 통하여 엽록체 형질전환체의 잎에서 GFP 유전자가 강하게 발현, 축적됨을 알 수 있었다. 본 연구에서 확립된 감자 엽록체 형질전환 시스템을 이용하여 유용 유전자를 도입함으로써 농업적 형질을 개선하거나 고부가가치 단백질을 대량 생산하는 감자를 보다 효율적으로 개발할 수 있을 것이다.

Tissue Culture Studies of Anthranilate Synthase the Tryptophan Biosynthetic Control Enzyme

  • Widholm, Jack.M.
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.55-60
    • /
    • 2000
  • Experiments initiated 30 years ago to obtain selectable markers have led to a series of studies of Trp biosynthesis and anthranilate synthase (AS) the control enzyme using largely plant tissue cultures since they have experimental properties that can be readily exploited. Enzymological and compound feeding studies provided evidence that AS is the control point in the Trp biosynthesis branch and that altering the AS feedback control by the selection of mutants resistant to the Trp analog 5-methyl-tryptophan (5MT) can lead to the overproduction of this important amino acid. Plants regenerated from these Trp overproducing lines of most species also had high free Trp levels but Nicotiana tabaum (tobacco) plants expressed the feedback altered AS only in cultured cells and not in the regenerated plants. further tests by transient and stable expression of the cloned promoter for the naturally occurring tobacco feedback-insensitive AS, denoted ASA2, confirmed the tissue culture specific nature of the expression control. The 5MT caused by the expression of a feedback-insensitive AS from tobacco has been used to select protoplast fusion hybrids with several species since the resistance is expressed dominantly. Recently the ASA2 gene has been used successfully as a selectable marker to select transformed Astragalus sinicus and Glycine max hairy roots induced by Agrobactetium rhizogenes. These results show that the ASA2y-subunit can interact with the y-subunit of another species to form active feedback-insensitive enzyme that may be useful for selecting transformed cells. Plastid DNA transformation of tobacco has also effectively expressed ASA2 in the compartment in which Trp biosynthesis is localized in the cell.

  • PDF

세균성 질병 예방을 위한 식물 경구 백신 연구 동향 (Recent Studies on the Edible Plant Vaccine for Prophylactic Medicine against Microorganism-Mediated Diseases)

  • 한범수;정영재;노경희;박종석;조강진;김용환;김종범
    • Journal of Plant Biotechnology
    • /
    • 제32권4호
    • /
    • pp.233-241
    • /
    • 2005
  • Plants have considerable advantages for the production of antigenic proteins because they provide an inexpensive source of protein and an easy administration of vaccine. Since a publication describing edible plant vaccine of HBsAg in 1992, a number of laboratories around the world have studied the use of plants as the bioreactor to produce antigenic proteins of human or animal pathogens. Over the last ten years, these works have been mainly focused on three major strategies for the production of antigenic proteins in plants: stable genetic transformation of either the nuclear or plastid genome, or transient expression in plants using viral vectors. As many antigenic proteins have been expressed in tobacco, also several laboratories have succeeded to express genes encoding antigenic proteins in other crop plants: potato, tomato, maize, carrot, soybean and spinach. At present many works for the production of edible plant vaccine against bacteria-mediated diseases have mostly performed the studies of enterotoxins and adhesion proteins. Also the development of new-type antigens (pili, flagella, surface protein, other enterotoxin and exotoxin etc.) is required for various targets and more efficacy to immunize against microorganism pathogens. Many works mostly studied in experimental animals had good results, and phase I clinical trial of LTB clearly indicated its immunogenic ability. On the other hand, edible plant vaccines have still problems remained to be solved. In addition to the accumulation of sufficient antigen in plants, human health, environment and agriculture regulation should be proven. Also oral tolerance, the physiological response to food antigens and commensal flora is the induction of a state of specific immunological unresponsiveness, needs to be addressed before plant-derived vaccine becomes a therapeutic option.