• Title/Summary/Keyword: Plasticine

Search Result 67, Processing Time 0.029 seconds

Determination of Blow Efficiency of the Forging Hammer (단조해머의 타격효율 결정)

  • 이성호;조남춘;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1539-1544
    • /
    • 1995
  • Copper blow test to measure the forging capability of 35 ton counterblow hammer and upset of plasticine on the model hammer to investigate the change of the blow efficiency during the forging process have been performed together with finite element analyses of these experiments. The blow efficiency of the hammer has been found to be dependent on the friction and on the contact area between the die and the workpiece. The effects of the volume and the aspect ratio of the billet have not been found. Inferring from the experimental results and Schey's empirical formula on the forging load, we expect that the efficiency also varies with the flow stress of the workpiece material and with the shape complexity of the forging product.

Process Design for the Hot Forging of Asymmetric Rail to Symmetric Rail

  • Cho, Hae-Yong;Kim, Yong-Yun;Lee, Ki-Joung;Lee, Sung-Ho;Oh, Byung-Ki;Nam, Gi-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1559-1564
    • /
    • 2004
  • The process design of hot forging, asymmetric to symmetric rib-web shaped steel, which is used for the turnout of express rails has been studied. Owing to the great difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single stage operation. The numerical simulation for hot forging of asymmetric shape to symmetric shape was carried out by using commercial FEM code, DEFORMTM-2D. For comparison with the simulation results, a experiment of flow analysis using plasticine was also carried out. The results of the flow experiment showed good agreement with those of the simulation.

Experimental Investigation on the Flow Control in Non-Axisymmetric Flat Die Extrusion-1 (비축대칭 평금형 압출에서 유동제어에 관한 실험적 연구-I)

  • Bae, W.B.;Kim, Y.H.;Park, J.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.136-141
    • /
    • 1996
  • In this paper, the design variables of the extruded parts involving flat die through model experiment are investigated to overcome some current problems such as bending and twisting and get more improved quality products. Above all, the deformation behavior is analyzed in experiment and investigated flow charactristics inside container. Finally, the straight extruded product is obtained by modified bearing land width on the basis of the exit velocities distribution from bended and twisted products.

  • PDF

A Study on Non-Axisymmetric Precision Forging with and without Flash (플래쉬 유무에 따른 비축대칭 정밀단조에 관한 연구)

  • 배원병;김영호;최재찬;이종헌;김동영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.218-223
    • /
    • 1993
  • An UBET(Upper Bound Elemental Technique) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner and plane-strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, from which the upper-bound forging load, the flow pattern, the grid pattern, the veocity distribution and the effective strain are determined. To show the merit of flashless forging, the result of flashless and flash forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

A Study on the Development of Aluminum Piston by Forging Process (알루미늄 단조 피스톤의 개발에 관한 연구)

  • Kim, Y.H.;Bae, W.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.30-36
    • /
    • 1997
  • In this study, the development of an aluminum forged piston was tried to substitute the cast piston, in which there were internal defects such as blow hole and shrink pipe. A gasoline engine piston was chosen as an example for developing the forged piston. Before aluminum forging, model, material (plasticine) test was carried out to investigate the forgeability and internal flow pattern of the forged piston at room temperature. From the result of model material test, an aluminum piston to be forged was redesigned. The aluminum pistion was forged in hot process. The quality of a forged piston was compared with that of a cast piston in the point of mechanical properties, internal defect and microstructure. It was proved that the forged piston was superior to the cast piston.

  • PDF

UBET Analysis and Model Test of the Forming Process of Magnetron Anode (마그네트론 양극 성형공정의 UBET해석 및 모형실험)

  • Jo, K.H.;Bae, W.B.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.126-136
    • /
    • 1995
  • Copper magnetron anode of a microsave-over consists of an cylindrical outer-tube and various inner-vanes. The magnetron anode is produced by the complex processes; vane blanking, pipe cutting and silver-alloy brazing of vanes. Recently, the backward extrusion process for forming vanes has been developed to avoid the complex procedures. The developed process is analyzed by using upper-bound elemental technique (UBET). In the UBET analysis, the upper-bound load, the configuration and the vane-height of final extruded product are determined by minimizing the roral power consumption with repect to chosen parameters. To verify theoretical analysis, experiments have been carried out with pure plasticine billets at room temperature, using different web-thickness and number of vanes. The theoretical predictions both for forming load and vane-height are in reasonable agreement with the experimental results.

  • PDF

A Study on the Mechanical Press Joining of Double Sheet Metals Using Physical Modeling (물리적 모델링법을 이용한 이중 박판의 기계적 접합 공정에 관한 연구)

  • Kwon, S.O.;Kim, B.J.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.107-112
    • /
    • 2007
  • In this study, the mechanical joining process for double sheet metals was investigated by using physical modeling method. Process parameters of mechanical joining such as friction coefficient, drawing depth, pouch radius, die radius and material thickness are preliminarily analyzed by finite element method. Referring to the finite element analysis results mechanical joining system is designed on the basis of physical similarities. From the physical modeling test, the effect of process parameters on the deformation for the mechanical joining are experimentally investigated and optimized joining shape that can provide strong joining strength is obtained.

Analysis of the Corner Cavity of Axisymmetric Backward Extrusion by the Upper Bound Approach (상계해석을 이용한 축대칭 후방압출 공정의 Corner Cavity 해석)

  • 박재훈;변홍석;김영호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.144-150
    • /
    • 2000
  • In this paper, the formation of a corner cavity in the final stage of axisymmetric backward extrusion process is studied by means of upper bound analysis using kinematically admissible velocity. The quantitative relationships between corner cavity formation and process parameters are studied. And analytical results are compared with those of experiment to which plasticine is used. It is found that the analytical results agree well with experimental one. In addition, to restrict the formation of a corner cavity, driven container is applied to backward extrusion and the results are compared with those of FEM. The critical thickness of the bottom of the billet decreases with increase in reduction of area, and increases with decrease in friction. To prevent the formation of corner cavity, the concept of moving container was applied. Throughout this process, the occurrence of a corner cavity is delayed and forming limit area is enlarged.

  • PDF

점진적 팽창단조법에의한 대형 노즐형제품의 성형공정 개발

  • 박치용;양동열;이경훈;은일상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.33-37
    • /
    • 1993
  • 연결부를 지닌 대형의 노즐형상 제품은 대형산업기기에서 용기의 일부 및 추진체 및 인공위성 발사 대등에서 쓰이는 제품으로 목적하고자 하는 최종 조립품의크기에 따라 제품자체의 지름이 1m 에서 수m 에 이르는 대형으로 제작된다. 대형노즐형 제품은 제품 자체의 강도, 정확한 치수 및 소요재료의 다수등도 중요한 요소이나, 가공하중의 크기에 따라 다르지만 제품을 만들기 위해서는 수만톤을 필요로하기 때문에 제품제조의 가능여부가 성형기의 능력에 의존하게 된다. 본 연구는 비교적 소형장비로써 대형 노즐형단조 품의 제작이 가능한 새로운 성형공정을 개발하는데 그 목적이 있으며 공정개발은 비교적 소형 장비로써 대형단조품의 제작이 가능하도록 하는데 촛점을 맞추고서 이루어 졌다. 이를 위해 여러가지 가능한 방법 들을 제안하고, 각각의 공정 방법들에 대해서 Plasticine 모델 시험을 통하여 소성유동에 의한 성형성과 하중을 검토한 후에 국내에서 사용가능한 장비 및 하중능력, 그리고 성형성 등을 고려하여 적절한 공정방법을 선택하였다. 선택된 공정에서 점진적 팽창단조를 위한 예비 성형체의 결정 및 공정변수의 결정등을 납 모델링실험을 행하여하였으며 실재 재료의 축소모형실험을 수행하여 공정을 확인 하였다.

A Study on the Plastic Flow for Porthole Extrusion with Mandrel (맨드렐이 있는 포트홀 압출의 소성유동에 관한 연구)

  • Lim H. J.;Han C. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.78-81
    • /
    • 2000
  • In this study the plasic flow before welding stage in the cahamber is analyzed by FEM and experiments during the porthole extrusion process. The analysis is concerned with plastic flow in the port and welding chamber of rectangular hollow section extrusion through the porthole die with mandrell. Numerical simulation by finite element code to investigate the plastic flow is discussed for both tapered inlet and straight inlet chamber. To visualize the flow in extrusion process split dies and punches are designed and manufactred by wire EDM. Experiments are carried out by using the plasticine as a model material at room temperature. The theoretical predictions are reasonable agreements with experimental results in the welding lines and the deformed profiles.

  • PDF