• Title/Summary/Keyword: Plasticine

Search Result 67, Processing Time 0.019 seconds

Analysis of axisymmetric closed-die forging using UBET (UBET를 이용한 축대칭 형단조 해석)

  • 김동원;김헌영;신수정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.337-344
    • /
    • 1989
  • The upper bound elemental technique (UBET) is used to simulate the bulk flow characteristics in axisymmetric closed die forging process. Internal flow inside the cavity is predicted using a kinematically admissible velocity field that minimizes the rate of energy consumption. Application of the technique includes an assessment of the formation of flash and of degree of filling in rib-web type cavity using billets with various aspect rations. The technique considering bulging effect is performed in an incremental manner. The results of simulation show how it can be used for the prediction of forging load, metal flow, and free surface profile. The experiments are carried out with plasticine. There are good agreements in forging load and material flow in cavity between the simulation and experiment. The developed program using UBET can be effectively applied to the various forging problems.

A Study on Forging Process about Preform of Articulated Piston for Diesel Engine (디젤 엔진용 분절 피스톤의 예비성형체 단조 공정 연구)

  • 염성호;이병섭;노병래;서기석;홍성인
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.635-641
    • /
    • 2004
  • Today the specific outputs of modern supercharger DI diesel engine for passenger cars reach values exceeding 50kw/1. By development of the articulated piston, specific output of up to 70kw/1 are sought. In doing so, peak cylinder pressure increases from the current 14-16MPa to 18-20MPa. The Articulated piston was composed Al cast skirt part and steel forged crown part. We have the target fer the design of forging process and die of the steel forged crown part. The design parameters of the forging process of the piston were obtained by the forging industry experiences and our experimental data and analysis result of finite element simulation. Especially, the design parameter of preform in blocker die was decided by finite element simulation using numerical package DEFROM3D. And also we can verify the design parameter by conducting visio-plasticity test using plasticine material. When we compared the results of analysis and experiment, a metal flow and load curve showed good agreement. Through this research, we could design optimal preform shape of articulated piston for this supercharged DI diesel engine.

An Experimental Analysis for Axisymetric Hot Extrusion Through Square Dies Using Visioplasticity Method (변형가시화법을 이용한 열간 축대칭 평금형 압출의 실험적 해석)

  • 엄태복;한철호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.107-113
    • /
    • 1995
  • To investigate the behavior of platic deformation inaxisymmetric hot extrusion through square dies, the physical modelling with the plasticine as a model material is carried out at the room temperature. Some mechanical properties of the model material are determined by compression and ring compression tests. Visioplasticity method using experimetal grid distortion is introduced to anlayze the plastic flow, strain rate and strain distribution.

  • PDF

A Basic Study on the Piston Forging Process

  • Kim, Young-Ho;Bae, Won-Byong;Kim, Jae-Cheol;Kim, Hyeong-Sik
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.177-181
    • /
    • 1996
  • A fundamental study for the production of an internal combustion engine piston by forging is performed through UBET(Upper Bound Elemental Technique) analysis and experiments. In UBET analysis, an optimal preform of the aluminum piston is predicted and the results are compared with the experimental results. The internal flow pattern and and the forging loads according to the different friction condition are investigated.

  • PDF

An Experimental Anlysis in Non-Circular Tube Extrusion Using the Effective Extrusion Ratio (비원형 중공 압출의 유효 압출비를 이용한 실험적 해석)

  • 한철호;김상화
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.520-526
    • /
    • 1999
  • In this study a practical formula based on the experime수 랙 the estimation of load in the non-circular tube extrusion with the mandrel is proposed by using the effective extrusion ratio. Through some experiments for the several shaped sections, the coefficients of the empirical equation are determined by ticine as a model material at room temperature. The proposed empirical formula for the estimation of extrusion load will be applicable to the non-steady state as well as steady state for the extrusion of various shaped tubes from hollow billets.

  • PDF

A Visioplasticity Analysis for Axisymmetric Extrusion through Square Dies Using Model Material (모델재를 이용한 축대칭 평금형 압출공정의 변형가시화 해석)

  • 한철호;엄태복
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.156-164
    • /
    • 1996
  • To investigate the behavior of plastic deformation in axisymmetric extrusion through square dies, experimental works with the plasticine as a model material are carried out at the room temperature. Some mechanical properties of the model material are determined by compression and ring compression tests. Visioplasticity method using expermental grid distortion in extrusion is introduced to analyze the plastic flow strain rate and strain distribution. In spite of severe deformation during the extrusion through square die the visioplasticity method shows good results for the distribution of effective strain rate and effective strain.

  • PDF

A Study on Development of Model Materials Showing Similar Flow Characteristics of Hot Mild Steel at Various Temperatures (고온 연강 유동특성을 상사하는 모델재료 개발에 관한 연구)

  • 이종헌;김영호;배원병;이원화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1161-1171
    • /
    • 1993
  • Model materials are developed to achieve similarity of flow patterns for mild steels in forming processes at high temperatures. The model materials consist of pure plasticine and one or two additives such as resin and lanolin. To verify the similarity of flow patterns between physical modeling and compression of mild steels at high temperatures, ring and compression tests have been carried out with the developed-model materials at various strain rates, temperatures and lubricants. The test results are in good agreement with the flow patterns obtained from upsetting of a mild steel at high temperatures.

Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material (소성가공시 재료유동에 대한 수치해석 및 모델실험)

  • 김헌영;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.285-299
    • /
    • 1993
  • The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behavior in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method.

An Experimental Study on Forming an Axi-Symmetric Dome Type Closed-Die Forging Product Using Modeling Material(I) (모델링재료를 이용한 축대칭형 돔형상의 폐쇄단조 성형 연구 (I))

  • 이근안;임용택;이종수;홍성석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2082-2089
    • /
    • 1992
  • An experimental study on forging an axi-symmetric dome type of AISI4130 was carried out using modeling material. In order to verify the validity of the experimental data, a similarity study between plasticine and AISI4130 has been made. Friction conditions were characterized by ring test for the various lubricants. For the closed-die forging experiments of an axi-symmetric dome type of AISI4130 using the plasticine, various cylindrical billets with different aspect ratios were forged and different flash width to thickness(W/T) ratios were used in order to determine the optimum forging conditions. As W/T ratios decrease forging loads decrease while excess volumes increase. It was found out that the experimental results reproduce the similiar results available in the literature. As a result of these experiments, it was construed physical modeling is an excellent tool for forging process simulation at a practical level.

Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control (유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Byung-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF