• 제목/요약/키워드: Plastic waste classification

검색결과 17건 처리시간 0.021초

ICT기반 폐플라스틱 관리 전주기 기술 동향 (ICT-based Waste Plastic Management Life Cycle Technology)

  • 문영백;정훈;허태욱
    • 전자통신동향분석
    • /
    • 제37권4호
    • /
    • pp.28-35
    • /
    • 2022
  • To solve the challenge of waste plastics, this study investigated the related technologies and company trends along the plastic life cycle, and primarily describes ICT technologies to improve efficiency in the process of sorting and sorting waste plastics. Waste plastic discharge caused by the explosive increase in parcel traffic because of COVID-19 is also growing exponentially. Hence, waste treatment is emerging as a social challenge. Most of the domestic waste classification depends on the manual process according to the waste pollution level. The plastic material classification approach using the spectroscopy approach reveals a high error in the contaminated waste plastic classification, but if the Artificial Intelligence-based image classification technology is employed together, the classification precision can be enhanced because of the type of waste plastic product and the contaminated part can be differentiated.

Sorting for Plastic Bottles Recycling using Machine Vision Methods

  • SanaSadat Mirahsani;Sasan Ghasemipour;AmirAbbas Motamedi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.89-98
    • /
    • 2024
  • Due to the increase in population and consequently the increase in the production of plastic waste, recovery of this part of the waste is an undeniable necessity. On the other hand, the recycling of plastic waste, if it is placed in a systematic process and controlled, can be effective in creating jobs and maintaining environmental health. Waste collection in many large cities has become a major problem due to lack of proper planning with increasing waste from population accumulation and changing consumption patterns. Today, waste management is no longer limited to waste collection, but waste collection is one of the important areas of its management, i.e. training, segregation, collection, recycling and processing. In this study, a systematic method based on machine vision for sorting plastic bottles in different colors for recycling purposes will be proposed. In this method, image classification and segmentation techniques were presented to improve the performance of plastic bottle classification. Evaluation of the proposed method and comparison with previous works showed the proper performance of this method.

Municipal waste classification system design based on Faster-RCNN and YoloV4 mixed model

  • Liu, Gan;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제9권3호
    • /
    • pp.305-314
    • /
    • 2021
  • Currently, due to COVID-19, household waste has a lot of impact on the environment due to packaging of food delivery. In this paper, we design and implement Faster-RCNN, SSD, and YOLOv4 models for municipal waste detection and classification. The data set explores two types of plastics, which account for a large proportion of household waste, and the types of aluminum cans. To classify the plastic type and the aluminum can type, 1,083 aluminum can types and 1,003 plastic types were studied. In addition, in order to increase the accuracy, we compare and evaluate the loss value and the accuracy value for the detection of municipal waste classification using Faster-RCNN, SDD, and YoloV4 three models. As a final result of this paper, the average precision value of the SSD model is 99.99%, the average precision value of plastics is 97.65%, and the mAP value is 99.78%, which is the best result.

Near Field IR (NIR) 스펙트럼 및 결정 트리 기반 기계학습을 이용한 플라스틱 재질 분류 시스템 (The Evaluation of a Plastic Material Classification System using Near Field IR (NIR) Spectrum and Decision Tree based Machine Learning)

  • 국중진
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.92-97
    • /
    • 2022
  • Plastics are classified into 7 types such as PET (PETE), HDPE, PVC, LDPE, PP, PS, and Other for separation and recycling. Recently, large corporations advocating ESG management are replacing them with bioplastics. Incineration and landfill of disposal of plastic waste are responsible for air pollution and destruction of the ecosystem. Because it is not easy to accurately classify plastic materials with the naked eye, automated system-based screening studies using various sensor technologies and AI-based software technologies have been conducted. In this paper, NIR scanning devices considering the NIR wavelength characteristics that appear differently for each plastic material and a system that can identify the type of plastic by learning the NIR spectrum data collected through it. The accuracy of plastic material identification was evaluated through a decision tree-based SVM model for multiclass classification on NIR spectral datasets for 8 types of plastic samples including biodegradable plastic.

Factors Affecting the Intention to Distribute in Sort Plastic Waste of Vietnamese People: A Case Study in Ho Chi Minh City

  • Thai Dinh TRUONG;Thich Van NGUYEN
    • 유통과학연구
    • /
    • 제21권8호
    • /
    • pp.35-45
    • /
    • 2023
  • Purpose: This paper (1) identifies the factors that affect people's changing habits towards waste sorting, (2) evaluates the benefits of waste sorting to the environment and (3) designs communication strategies to change people's behavior and habits in sorting plastic waste in Ho Chi Mnh City, Vietnam. Research design, data and methodology: Using the data from 309 people that are living in Ho Chi Minh City and Structural Equation Modeling (SEM), to evaluate variables and test the hypotheses. Results: Research results show that attitudes, subjective standards, behavioral control, and facilities affect people's intention to classify plastic waste. We find that environmental concerns greatly influence people's attitudes. In contrast, environmental concerns have a relatively weaker effect on people's degree of behavioral control. Conclusion: Environmental protection is a matter of concern in the world. In Vietnam, this issue has been institutionalized into law to create a basis for improving the effectiveness of environmental protection activities. This article has some limitations. Firstly, sample is limited to HCMC residents; the study results are not representative of the entire population of Vietnam. This paper is based on cross-sectional data, which is not the best way to establish a causal relationship between the intention to sort plastic waste and its drivers.

Waste Classification by Fine-Tuning Pre-trained CNN and GAN

  • Alsabei, Amani;Alsayed, Ashwaq;Alzahrani, Manar;Al-Shareef, Sarah
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.65-70
    • /
    • 2021
  • Waste accumulation is becoming a significant challenge in most urban areas and if it continues unchecked, is poised to have severe repercussions on our environment and health. The massive industrialisation in our cities has been followed by a commensurate waste creation that has become a bottleneck for even waste management systems. While recycling is a viable solution for waste management, it can be daunting to classify waste material for recycling accurately. In this study, transfer learning models were proposed to automatically classify wastes based on six materials (cardboard, glass, metal, paper, plastic, and trash). The tested pre-trained models were ResNet50, VGG16, InceptionV3, and Xception. Data augmentation was done using a Generative Adversarial Network (GAN) with various image generation percentages. It was found that models based on Xception and VGG16 were more robust. In contrast, models based on ResNet50 and InceptionV3 were sensitive to the added machine-generated images as the accuracy degrades significantly compared to training with no artificial data.

풍력(風力) 및 습식비중(濕式比重) 선별(選別)에 의한 혼합(混合)폐플라스틱 종말품(終末品)으로부터 PVC 제거(除去)에 관한 연구(硏究) (Removal of PVC from Mixed Plastic Waste by Combination of Air Classification and Centrifugal Process)

  • 최우진;유재명
    • 자원리싸이클링
    • /
    • 제16권5호
    • /
    • pp.71-76
    • /
    • 2007
  • 가정에서 분리 배출된 폐플라스틱은 일반적으로 수선별 등 분리선별 공정을 거친 후 종말품으로 회수되어, 현재 대부분이 매립이나 소각되고 있다. 혼합폐플라스틱 종말품의 경우 2006년 약 175만톤 발생된 것으로 예측되고 있으나, EPR실시 이후로 발생량은 2000년에 비해 2배 이상 크게 증가한 실정이다. 특히, 혼합폐플라스틱 종말품의 경우 PVC 함량(4 wt.% 이하)이 매우 높아 이들의 재활용에 커다란 제약이 되고 있다. 본 연구에서는 혼합폐플라스틱 종말품으로부터 풍력 및 습식 비중선별장치를 이용하여 폴리올리핀계 (PE, PP, PS) 플라스틱을 경량물로 회수하는 선별시스템을 개발하였다. 본 선별시스템은 풍력선별, 자력선별, 1단계 파쇄, 정량공급 및 습식 비중선별 공정으로 구성되어 있으며, 습식 비중선별 공정은 원심분리를 기본으로 혼합-세척-선별 및 탈수가 단일장치내에 집약된 특징이 있다. 또한, 본 연구에서는 연질 플라스틱의 분쇄 효율을 크게 개선한 파쇄기를 개발하였다. 개발된 습식 비중선별장치의 용량은 시간당 0.5 톤으로, 이를 이용하여 회수된 경량물의 PVC 함량은 0.3wt.% 이하이며, 경량 및 중량 회수물의 수분 함량도 각각 10% 이하를 달성하였다.

Deep Learning 기반의 폐기물 선별 Vision 시스템 개발 (Development of Deep Learning based waste Detection vision system)

  • 한봉석;권혁원;신봉철
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.60-66
    • /
    • 2022
  • Recently, with the development of industry and the improvement of living standards, various wastes are generated along with the production of various products. Most of these wastes are used as containers for products, and plastic or aluminum is used. Various attempts are being made to automate the classification of these wastes due to the high labor cost, but most of them are solved by manpower due to the geometrical shape change due to the nature of the waste. In this study, in order to automate the waste sorting task, Deep Learning technology is applied to a robot system for waste sorting and a vision system for waste sorting to effectively perform sorting tasks according to the shape of waste. As a result of the experiment, a Deep Learning parameter suitable for waste sorting was selected. In addition, through various experiments, it was confirmed that 99% of wastes could be selected in individual & group image learning. It is expected that this will enable automation of the waste sorting operation.

딥러닝기반 건축폐기물 이미지 분류 시스템 비교 (A Comparison of Image Classification System for Building Waste Data based on Deep Learning)

  • 성재경;양민철;문경남;김용국
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권3호
    • /
    • pp.199-206
    • /
    • 2023
  • 본 연구는 건축시 발생되는 폐기물의 자동분류를 위해 딥러닝 알고리즘을 활용해 건출 폐기물 데이터를 각각 목재 폐기물, 플라스틱 폐기물, 콘크리트 폐기물로 분류하는 두 모델들을 통해서 성능 비교를 한다. 건축 폐기물의 분류를 위해 사용된 딥러닝 알고리즘은 합성곱 신경망 이미지 분류 알고리즘 VGG-16과 NLP를 기반으로 이미지를 시퀀스화 시킨ViT, Vision Transformer 모델을 사용했다. 건축 폐기물 데이터 수집을 위해 이미지 데이터를 전 세계 검색엔진에서 크롤링 하였고, 육안으로도 명확히 구분하기 어렵거나, 중복되는 등 실험에 방해되는 이미지는 전부 제외하여 각 분류당 1천장씩 총 3천장의 이미지를 확보했다. 또한, 데이터 학습시에 모델의 정확도 향상에 도움을 주기 위해 데이터 확대 작업을 진행해 총 3만장의 이미지로 실험을 진행 하였다. 수집된 이미 데이터가 정형화 되어있지 않은 데이터 임에도 불구하고 실험 결과는 정확도가 VGG-16는 91.5%, ViT 는 92.7%의 결과가 나타났다. 이는 실제 건축폐기물 데이터 관리 작업에 실전 활용 가능성을 제시한 것으로 보인다. 본 연구를 바탕으로 추후에 객체 탐지 기법이나 의미론적 분할 기법까지 활용한다면, 하나의 이미지 안에서도 여러 세밀한 분류가 가능해 더욱 완벽한 분류가 가능할 것이다.

분리수거를 위한 페트병 분리시스템의 구현 (Implementation of Plastic Bottle Classification System for Recycling)

  • 박용하;박지훈;정호영;이주상;이중엽
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.365-368
    • /
    • 2021
  • 본 연구에서는 적외선 센서를 이용한 페트병 분리수거 시스템을 구현하였다. 제안된 시스템은 인식부, 제어부, 알람부 및 구동부로 구성된다. 인식부는 페트병을 감지해 페트병과 센서와의 거리를 측정하고 값을 추출하고 추출된 값을 표준 범위와 비교하여 값이 표준 범위를 벗어날 경우에는 제어값을 제어부에 전송하고, 특정범위를 넘어간 경우 라벨 혹은 뚜껑의 유무결과를 제어부에 전송한다. 제어부에서는 센서부로부터 전송받은 결과값에 따라서 수거함의 입구를 개방하거나 알람부를 제어하는 기능을 수행한다. 제안된 시스템 구현을 위하여 인식부는 적외선 센서로 구현하였고, 제어부는 C언어 기반의 아두이노 스케치 프로그램으로 제작하였다. 또한, 인식부와 제어부는 아날로그 신호를 이용하여 통신할 수 있게 하였다. 제안된 시스템은 정해진 알고리즘에 따라 페트병의 라벨과 뚜껑의 유무를 정확히 판단한 후 라벨 혹은 뚜껑이 부착되었을 때 수거함의 입구를 막는다. 국민 1인당 배출되는 폐기물의 양이 높고 재활용이 되지 않아 쓰레기의 대다수를 소각시키고 있는 상황에서 본 연구에서 제안한 시스템을 통하여 페트병의 재활용률을 높이기를 기대한다.

  • PDF