• Title/Summary/Keyword: Plastic parts

Search Result 631, Processing Time 0.029 seconds

Material Characterization of RP Process - Fused Deposition Modeling (쾌속조형용 재료의 특성 - FDM)

  • 김승화;안성훈
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 2002
  • Rapid Prototyping (RP) technology has been advanced to fabricate initial prototypes from various materials. Stratasys′ Fused Deposition Modeling (FDM) is one of the typical RP processes that provide functional prototypes of ABS plastic. In order to predict the behavior of final ABS parts, it is critical to understand the material properties of the raw FDM process material, and the effect that FDM build parameters have on the FDM part. In this paper, we seek to characterize the properties of ABS parts fabricated by the FDM 1650. Using the Design of Experiment (DOE) approach, the process parameters of FDM, such as raster orientation, air gap, bead width, color, and model temperature were examined. Tensile strengths of crisscross specimens, 〔45°/-45°〕, cross specimens, 〔0°/90°〕, and directionally fabricated tensile specimens (〔0°〕 and 〔90°〕) were measured and compared with the injection molded FDM-ABS P400 material. For the FDM parts made with a -0.003"air gap, the typical tensile strength ranged between 50 percent and 83 percent of the strength of injection molded ABS P400. From the experiments, a couple of build rules for designing FDM parts were obtained.

Distally Based Anterolateral thigh Pedicled Flap in the Reconstruction of Defect Around Knee (역혈류성 전외측대퇴 혈관경피판을 이용한 무릎 주위 결손의 재건)

  • Park, Sang-Soon;Shim, Jeong-Su
    • Archives of Plastic Surgery
    • /
    • v.37 no.6
    • /
    • pp.769-774
    • /
    • 2010
  • Purpose: As the soft tissue defect around the knee is difficult to reconstruct, local flap or free flap is used. Distally based anterolateral thigh pedicled flap introduced by Zhang uses sufficient reverse flow supplied from the vascular network around the knee. We report successful reconstruction of defect around knee by this method. Methods: Four patients with skin & soft tissue defect around knee have been treated for reconstruction using the distally based anterolateral thigh pedicled flap. First, the doppler was used to check the perforator flap of the descending branch of the lateral circumflex femoral artery and to draw and dissect the perforator flap as much as needed. After the dissection, the proximal of the descending branch was clamped and checked for sufficient supply of blood flow from the reverse flow and then ligated. It was dissected along the descending branch and in order to prevent damage to the joined parts of the descending branch and the lateral superior geniculate artery, a more careful ligation was done starting from 10 cm superior to the knee. The defect was reconstructed after securing enough vascular pedicle to cover all the damaged parts. Results: Not all patients suffered from flap necrosis. In case of the patient with chronic osteomyelitis, slight venous congestion was observed right after the surgery but it disappeared the following day. All three patients had no occurences of additional complications. Conclusion: Distally based anterolateral thigh pedicled flap was enough to provide large flap for knee reconstruction. It had sufficient blood flow and vascular pedicle. It also had taken short operation time compared to the free flap operation. The distally based anterolateral thigh pedicled flap used by the authors is a very useful way of reconstructing the area around knee.

Usefulness of Omental Flap for Various Soft Tissue Reconstruction (다양한 연부조직 재건에서의 대망피판의 유용성)

  • Lee, Hwa Seob;Park, Sae Jung;Ryu, Hyung Ho;Suh, Man Soo;Lee, Dong Gul;Chung, Ho Yun;Park, Jae Woo;Cho, Byung Chae
    • Archives of Plastic Surgery
    • /
    • v.32 no.4
    • /
    • pp.428-434
    • /
    • 2005
  • Extensive and complicated defects on the body call for an omnipotent tool for a perfect reconstruction. Flaps derived from the omentum has many advantages over the conventional flaps. From 1999 to 2004, Omental flaps were applied for various soft tissue reconstructions. Among total 20 total 7 cases were for immediate reconstruction, 2 cases for chronic infection, 3 cases for simultaneous reconstruction of two defects, 4 cases for functional joint reconstruction and 4 cases were for flow- through revascularization. Among these cases, 3 cases were operated with minimal incision harvest technique. There were no complete flap failures, partial necrosis of the distal parts were noted on three cases. The omental flap is indicated on a large contaminated defect reconstruction due to its large size, well-vascularized, and malleable properties. The omental flap provides several additional advantages over other flaps, which are; the availability of the one staged simultaneous reconstruction of two defects with one flap, providing gliding function for the joint motion, and a flow-through characteristics with long vascular pedicle. But there are some serious shortcomings, including a long abdominal scar and intraabdominal problems. However, these are rare and can be minimized with our minimal incision technique. Due to its unique characteristics. the omentum is one of the ideal tissues for the reconstruction of the complicated soft tissue defects due to its unique characteristics.

Rapid Development of a Humanoid Robot using Concurrent Implementation of CAD/CAM/CAE and RP (CAD/CAM/CAE/RP의 동시공학적 적용을 통한 휴머노이드 로봇의 쾌속 개발)

  • Park, Keun;Kim, Young-Seog;Kim, Chung-Seok;Park, Sung-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.50-57
    • /
    • 2007
  • In recent years, many robotics researches have been focused on developing human-friendly robots, that is, humanoid biped robots. The researches of humanoid robots include various areas such as hardware development, control of biped locomotion, artificial intelligence, human interaction, etc. The present work concerns the hardware development of a mid-size humanoid robot, BONOBO, focusing on rapid development of outer body parts with integrated application if CAD/CAM/CAE/RP. Most parts are three-dimensionally designed using 3D CAD, and effectively connected with CAE analyses using both kinematic simulation and structural analysis. In order to reduce lead time and investment cost for parts developments, Rapid Prototyping (RP) and CAM are selectively utilized for manufacturing body parts. These master parts are then replicated using the vacuum casting process, from which we can obtain plastic parts repeatedly. Through this integrated approach, the first prototype of BONOBO can be successfully developed with relatively low time and investment costs.

A Study on Manufacturing Resin-based Blow Mold using SLS Parts and Forming Prototype-car Parts (SLS 조형품을 이용한 수지형 블로우 몰드 제작 및 시작차 부품성형에 관한 연구)

  • 양화준;황보중;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.124-131
    • /
    • 2000
  • Rapid Prototyping(RP) models are no longer used only for design verification. Currently, parts built utilizing layer manufacturing technology can be employed as functional prototypes and as patterns or tools for different manufacturing processes such as vacuum casting, investment casting, injection molding, precise casting and sand casting. This trend of Rapid Prototyping application meets the requirement of concurrent engineering and its range covers a more spreaded area. The aim of this paper is saving the manufacturing lead time and cost of plastic parts having hollow space shapes used by prototype-car. Using rapid prototype patterns, made by the Selective Laser Sintering(SLS) technique, a new approach of manufacturing resin-based blow mold is discussed. It has a great potential fur making prototype-car parts with the batch size of under 200 parts, in case of rapid modification due to a subsequent design changes in developing stage. So, the process proposed in this research shows reduction of process time and manufacturing cost when compared with the conventional process such as a Zinc Alloy fur Stamping(ZAS) mold.

  • PDF

The Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis (사출-구조 연성해석을 통한 Glass Fiber 배향성이 충격 파괴에 미치는 영향)

  • Kim, Woong;Kim, JongRyang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • The use of engineering plastics in automotive components is increasing with the trend towards improving the car strength and reducing weight. Among the different choices of materials, engineering plastic emerged as the necessary material for achieving lower costs, reduced weight and improved production efficiency. To produce the automotive parts, it is important to predict defect and validation of injection molding prior to design. Injection molding analysis and structural analysis are widely applied as a part of the design process when developing automotive parts. Injection molding analysis, in particular, involves a highly complicated mechanism that requires deep knowledge of polymer properties as well as an analytic approach different from that used for a general isotropic material when the molded material is used as a structural material. This is because the parts made of polymer have pre-stress factors such as intrinsic deformation and residual stress. The most important factors for injection molded plastic products are injection molding condition and cavity design, taking into account ease of molding, mass production and application. Despite optimal injection molding conditions and cavity design, however, glass fiber orientation is critically linked to strength reduction. The application of injection molding and structural coupled analysis provides a low-cost solution for product molding and structural validation, all prior to the actual molding. The purpose of this study involves the validation, pre-study, and solution of defect in injection-molded polymer automotive parts using the simulation software for injection molding and structural coupled analysis. Finally, this thesis provides validation of an injection molding and structural coupled analytic mechanism that can demonstrate the effect of glass fiber orientation on mechanical strength. Design improvement ideas for the injection molded product of PPS (Poly Phenylene Sulfide)+40% glass fiber are also suggested.

Effects of the mold surface heating methods for the DVD stamper with nano pattern on the transcription of the injection molded parts using COC and PMMA plastics (나노패턴을 갖는 DVD용 스템퍼의 표면가열방식이 COC, PMMA 수지를 이용한 사출성형품의 전사성에 미치는 영향)

  • 김동학;유홍진;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.218-222
    • /
    • 2004
  • We developed the stamper structured mold with moving core type with nano pattern. Among the factors affecting the quality of injection molding plastic parts, We studied the effects of moving core surface heating method on the transcription of injection molding plastic parts with nano structures. Moving core surface heating has been tested by three different methods. The first was conventional injection molding process without heating moving core surface, the second was halogen lamp radiation heating process and the last was MmSH process using gas flame. As a result of making injection molded parts by using thermoplastic amorphous resins such as COC, PMMA, MmSH method which is the most high temperature of moving core surface showed the best nano pattern transcription of the three methods, but the outcome of conventional injection molding process was not better than others.

  • PDF

Sectional Forming Analysis of Automobile Sheet Metal Parts by using Rigid-Plastic Explicit Finite Element Method (강소성 외연적 유한요소법을 이용한 자동차 박판제품의 성형공정에 대한 단면해석)

  • Ahn, D.G.;Jung, D.W.;Yang, D.Y.;Lee, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.19-28
    • /
    • 1995
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modelling of material requiring large computation time. In the present work, rigid-plastic explicit finite element method is introduced for analysis of sheet metal forming processes in which plane strain normal anisotropy condition can be assumed by dividing the whole piece into sections. The explicit scheme is in good agreement with the implicit scheme for numerical analysis and experimental results of auto-body panels. The proposed rigid-plastic explicit finite element method can be used as robust and efficient computational method for prediction of defects and forming severity.

  • PDF

Analysis of Energy Consumption for Microwave Drying in PC Pellet (PC 펠렛의 마이크로웨이브 건조를 위한 에너지 효율 분석)

  • Lee, Hyun Min;Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.44-48
    • /
    • 2021
  • Semiconductor inspection equipment makes components using materials with insulating properties for functional inspection including current and voltage of semiconductor parts. A representative insulating material is plastic, and plastic is made of a component through an injection process using plastic pellet. When plastic pellets contain excessive moisture, problems such as performance degradation and product surface defects occur. To prevent this, pre-drying is essential, and the heat convective type is the most applied. However, the heat convective type has a problem of low consumption efficiency and a long drying time. Recently, many studies have been conducted on a drying method using microwaves due to high energy efficiency. In this paper, drying was performed using a microwave for drying PC pellets. Energy consumption and drying efficiency analyzed by set up an experimental apparatus of heat convective, microwave, and hybrid(heat convective + microwave) types. It was confirmed that energy consumption and drying efficiency were high when drying using microwaves, and it was confirmed that the hybrid method improved drying performance compared to the heat convective method. It is expected that the research results of this paper can be used as basic data for drying plastic pellets using microwave.

Research on Gas Injection Mold using CAE Analysis of Steering wheel Parts (자동차핸들 제품의 CAE해석을 활용한 가스 사출성형에 관한연구)

  • Kang, Sae-Ho;Woo, Chang-Ki;Kim, Ok-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7729-7735
    • /
    • 2015
  • As plastic injection mold parts is suitable system mass production making mold. So thick steering wheel parts is desirable to carry out gas injection molding. Gas injection mold is skill to inject nitrogen gas postfilling melting raw material into mold. Gas injection mold have many advantage like retrenchment of material cost, upgrading the guality. etc. It was decided gate position to minimize warpage of parts analysis injection mold process using mold flow software and incase doing gas injection mold using normal p.p material. it occur big warpage. so it is object minimizing warpage of injection parts to change p.p material containing mineral 18% and removing fingering phenomenon trouble as changing gate position. Also in case carrying out gas injection mold, I did comparison and analysis to grasp shape flow in gas setting a standard gate after flowing in raw material. Through this study, I found out changing of thickness by parts shape and it can occur warpage of parts by plastic material even though it carry out gas injection mold and it had a direct influence on trouble of parts by gate position.