• 제목/요약/키워드: Plastic parts

검색결과 631건 처리시간 0.026초

Earthquake-induced pounding between the main buildings of the "Quinto Orazio Flacco" school

  • Fiore, Alessandra;Monaco, Pietro
    • Earthquakes and Structures
    • /
    • 제1권4호
    • /
    • pp.371-390
    • /
    • 2010
  • Historical buildings in seismically active regions are severely damaged by earthquakes, since they certainly were not designed by the original builders to withstand seismic effects. In particular the reports after major ground motions indicate that earthquake-induced pounding between buildings may lead to substantial damage or even collapse of colliding structures. The research on structural pounding during earthquakes has been recently much advanced, although most of the studies are conducted on simplified single degree of freedom systems. In this paper a detailed pounding-involved response analysis of three adjacent structures is performed, concerning the main bodies of the "Quinto Orazio Flacco" school. The construction includes a main masonry building, with an M-shaped plan, and a reinforced concrete building, separated from the masonry one and realized along its free perimeter. By the analysis of the capacity curves obtained by suitable pushover procedures performed separately for each building, it emerges that masonry and reinforced concrete buildings are vulnerable to earthquake-induced structural pounding in the longitudinal direction. In particular, due to the geometric configuration of the school, a special case of impact between the reinforced concrete structure and two parts of the masonry building occurs. In order to evaluate the pounding-involved response of three adjacent structures, in this paper a numerical procedure is proposed, programmed using MATLAB software. Both a non-linear viscoelastic model to simulate impact and an elastic-perfectly plastic approximation of the storey shear force-drift relation are assumed, differently from many commercial softwares which admit just one non-linearity.

고 용융점 소재의 압출적층성형을 위한 우수한 방열특성을 갖는 3차원 프린터 nozzle부 기구설계 (Structural Design of 3D Printer Nozzle with Superior Heat Dissipation Characteristics for Deposition of Materials with High Melting Point)

  • 김완진;이상욱
    • 한국전자통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.313-318
    • /
    • 2020
  • 300도 이상의 높은 용융점을 갖는 소위 엔지니어링 플라스틱은 기구적인 강성과 내화학성 및 마찰 및 마모성능이 우수하여 여러 산업에서 금속을 대체하는 소재로 각광받고 있다. 본 연구에서는 용융적층모델링 공법을 기반으로 하는 3D 프린터에서 높은 용융점을 갖는 엔지니어링 플라스틱을 조형할 수 있도록 방열특성이 우수한 3D 프린터 nozzle부의 구조를 설계하고 이를 해석적으로 검증하였다. 높은 온도로 가열되는 heat block과 필라멘트가 이송되는 nozzle상부 간의 단열 및 신속한 냉각을 위하여, 열전도계수가 낮은 열차단부(heat brake부)를 2중으로 구성하였고, 열차단부에 생성되는 열이 냉각핀을 통해 대기에 의해 냉각되는 구조를 적용하였다. 개선된 nozzle부 구조설계를 통해 종래 3D 프린터의 BCnozzle과 비교할 때, heat sink부에서의 온도를 50% 가량 낮출 수 있었으며, heat block에 직접적으로 연결된 heat brake부 최종단의 정상상태 온도를 14% 가량 낮출 수 있었다.

극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제2부 파단 변형률 평면의 정식화 (Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface)

  • 정준모;박성주;김영훈
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.454-462
    • /
    • 2015
  • An extended study was conducted on the fracture criterion by Choung et al. (2011; 2012) and Choung and Nam (2013), and the results are presented in two parts. The theoretical background of the fracture and the results of new experimental studies were reported in Part I, and three-dimensional fracture surface formulations and verifications are reported in Part II. How the corrected true stress can be processed from the extrapolated true stress is first introduced. Numerical simulations using the corrected true stress were conducted for pure shear, shear-tension, and pure compression tests. The numerical results perfectly coincided with test results, except for the pure shear simulations, where volume locking appeared to prevent a load reduction. The average stress triaxialities, average normalized lode parameters, and equivalent plastic strain at fracture initiation were extracted from numerical simulations to formulate a new three-dimensional fracture strain surface. A series of extra tests with asymmetric notch specimens was performed to check the validity of the newly developed fracture strain surface. Then, a new user-subroutine was developed to calculate and transfer the two fracture parameters to commercial finite element code. Simulation results based on the user-subroutine were in good agreement with the test results.

GFRP 복합재료의 압축성형에서 표면요철에 미치는 성형조건의 영향 (Effects of Molding Condition on Surface Unevenness of GFRP Composites in Compression Molding)

  • 김형석;김진우;김용재;이동기
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1649-1657
    • /
    • 2010
  • 성형조건에 따른 GFRP 복합재료를 관찰하여, 성형품 표면의 불량원인을 조사했다. 표면거칠기에 영향을 주는 요철의 가장 주요한 발생원인은 보압 냉각 과정에서 발생하는 모재의 수축이었다. GFRP 복합재료 성형품 표면은 성형 시의 보압하중이 높을수록 좋아졌고, 서냉실험에서는 탈형온도가 낮을수록 성형품의 표면이 좋아졌다. 그리고 보압하중과 탈형온도를 고려하여, 성형품의 표면요철 생성과정과 섬유돌출 높이 변화를 규명했다.

An Investigation on Surface Flashover Characteristics of FRP in Several Insulation Gases for the Spacer of Cryogenic Bushing

  • Hwang, Jae-Sang;Shin, Woo-Ju;Seong, Jae-Kyu;Lee, Jong-Geon;Lee, Bang-Wook
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권4호
    • /
    • pp.20-23
    • /
    • 2012
  • Superconducting equipment has been actively investigated for securing the environment and energy technology (ET) in various parts of the world. Despite these movements, a high voltage cryogenic bushing, which plays an important role of interconnection between the electric power systems and superconducting devices, has not been fully developed due to severe insulation requirements. A gas insulated cryogenic bushing has been investigated as one of our projects since 2010. As a basic step to obtain the design parameters for cryogenic bushing, we focused on the surface flashover characteristics of glass fiber reinforced plastic (FRP) in several insulation gases. For the surface flashover tests, several insulation gases including $SF_6$, $CF_4$ and $N_2$ gas were prepared. Various length of FRP specimens were fabricated in order to obtain the fundamental data for creepage distance of FRP. The first specimen group was from 2 mm to 10 mm with 2 mm intervals and the second specimen group was from 20 mm to 100 mm with 20 mm intervals. And the gas pressure was varied from 1 bar to 4 bar. An AC overvoltage test and a lightning impulse test were performed. Then the experimental results of surface flashover were obtained and analyzed. Based on these results, it would be possible to design the optimum creepage distance of FRP in a cryogenic bushing.

인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발 (Development of two-component polyurethane metering system for in-mold coating)

  • 서봉현;이호상
    • Design & Manufacturing
    • /
    • 제10권2호
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.

트랙터 견인형 원형 베일 랩퍼의 개발(I) -랩핑 작업공정 분석 및 작업 시스템의 개발- (Development of a Tractor Attached Round Bale Wrapper(I) -Analysis of wrapping process and development of operating system-)

  • 박경규;김혁주;김창수;김재열;김진현;장철
    • Journal of Biosystems Engineering
    • /
    • 제27권1호
    • /
    • pp.11-18
    • /
    • 2002
  • One of the major obstructing factors against managing dairy farm in Korea has been a shortage of roughage supply, which resulted in excessive abuse of concentrate feed. In order to solve this problem, production of the wrap silage by the winter cereal forages raised in the fallow paddy field is strongly recommended in Korea. The main objective is to develop a tractor attached round bale wrapper which can process the silage by wrapping the round bales with thin plastic films. This is the first half of the study which is divided by two parts. In this first part, bale wrapping process was analyzed, and based on this results the followings were designed, developed and tested. 1. Bale wrapper which haying the maximum capacity of 1 ton bale with various functions such as loading, wrapping, discharging the round bales and supplying and cutting wrap films was designed. 2. An actuator and its hydraulic circuit of each process were developed and tested. 3. Also, the variations of hydraulic pressure and engine speed were investigated by operating bale wrapper developed. In this test, maximum pressure of the hydraulic circuit for the bale wrapping was 130 kg/㎠ when it raised the bale, which was quite below the relief pressure of 170 kg/㎠ of hydraulic circuit. In the engine speed test, speed drop was 20∼67 rpm, which meant that there was no over-load operation. Therefore, the experiment proved that developed hydraulic circuit and mechanism is stable in bale wrapping operation

BLDC 모터 고정자의 인서트 사출 성형에 관한 연구 (A Study on Insert Injection Molding for BLDC Motor Stator)

  • 최두순;김홍석
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.5737-5742
    • /
    • 2015
  • 인서트 사출 성형은 용융 플라스틱을 인서트가 삽입된 금형에 주입하는 공정이다. 사출 과정 중에 인서트는 용융 플라스틱이 가하는 압력에 의해 변형될 수 있다. 인서트의 변형은 인서트 주변의 유로 폭을 변화시키고, 이것은 미성형이나 성형품의 뒤틀림 같은 심각한 결함을 야기시킬 수 있다. 인서트의 변형을 감소시키기 위해서는 게이트 시스템, 인서트 형상, 성형 조건 등을 성공적으로 설계해야 한다. 본 연구에서는 BLDC 모터 고정자의 사출 성형 시 발행하는 인서트의 변형을 수치해석을 통하여 분석하였다. 인서트 변형을 감소시키기 위하여 게이트 위치와 인서트 형상을 수정하였다. 마지막으로, 수정된 설계로 사출 성형을 수행하고, 변형이 감소되었음을 확인하였다.

엠보싱 알루미늄 판재의 기계적특성과 스프링백 평가 (제1보) (Evaluation of mechanical properties and springback for embossed aluminum sheet - part I)

  • 김영석;조준행;;신동우
    • 한국산학기술학회논문지
    • /
    • 제16권2호
    • /
    • pp.921-926
    • /
    • 2015
  • 엠보싱된 알루미늄 판재는 표면적이 증가하여 방열효과가 뛰어나고 가공경화에 의해 굽힘강성이 증가하여 자동차 열차단기에 널리 사용된다. 하지만 판재의 특성상 주름발생률이 높아 프레스 성형에 많은 제약이 따른다. 본 연구에서는 3차원 구조 알루미늄 판재의 프레스 성형성 평가를 위한 기초연구로 3차원 구조 엠보싱 콘 형상 판재의 기계적특성을 평가하고 굽힘실험을 통해 프레스 가공 후 발생하는 스프링백을 정량적으로 평가하였다. 엠보싱 판재는 패턴의 방향에 따라 인장특성이 상이하다. 특히 평행 엠보싱 시편의 경우 항복응력이 감소하며 대각 엠보싱 시편의 경우 항복응력이 증가하게 되고 영률의 감소가 크게 나타난다. 그 결과 굽힘 성형가공 후에 스프링 백에 영향을 미친다.

고강도 강판을 적용한 프런트 사이드 멤버의 스프링백 해석 (Springback Analysis of the Front Side Member with Advanced High Strength Steel)

  • 송정한;김세호;박성호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.106-109
    • /
    • 2005
  • Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. Recently, advanced high strength steels (AHSS) such as TRIP and DP are finding acceptance in the automotive industry because their superior strength to weight ratio can lead to improved fuel efficiency and assessed crashworthiness of vehicles. The major troubles of the automotive structural members stamped with high strength steel sheets are the tendency of the large amount of springback due to the high yield strength and the tensile strength. The amount of springback is mainly influenced by the type of the yield function and anisotropic model induced by rolling. The discrepancy of the deep drawn product comparing the data of from the product design induced by springback must be compensated at the tool design stage in order to guarantee its function and assembly with other parts. The methodology of compensation of the low shape accuracy induced by large amount of springback is developed by the expert engineer in the industry. Recently, the numerical analysis is introduced in order to predict the amount of springback and to improve the shape accuracy prior to tryout stage of press working. In this paper, the tendency of springback is evaluated with respect to the blank material. The stamping process is analyzed fur the front side member formed with AHSS sheets such as TRIP60 and DP60. The analysis procedure fully covers the binderwrap, stamping, trimming and springback process with the commercial elasto-plastic finite element code LS-DYNA3D.

  • PDF