• Title/Summary/Keyword: Plastic parts

Search Result 631, Processing Time 0.026 seconds

Fatigue Behavior of PP-LFT used in FEM Carreir with Variation of Stress Ratio (FEM Carrier용 PP-LFT 소재의 응력비 변화에 따른 피로 거동)

  • Moon, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • Plastics have brought a significant progress in reducing the weight of automotive parts and improving gas emissions by replacing steel parts. The front end module (FEM) carrier, which was made from long glass fiber reinforced polypropylene (PP-LFT), is one of the most successful examples. On the other hand, more research on the fatigue behavior and vibration durability of automotive plastic parts will be needed to improve the long-term reliability. This paper analyzed the durability of the PP-LFT, which is fundamental to fatigue design and analysis of FEM carrier. Various fatigue tests were conducted at different stress ratios to evaluate the relationship between the fatigue life and stress amplitude or mean stress level. In the case of a fixed stress amplitude, the change in fatigue life with the stress ratio was 2~6% larger than the case of fixed maximum stress. Furthermore, this study observed the mechanism of initiation and propagation of the fatigue cracks in PP-LFT by scanning electron microscopy.

Extraction of Representative Emotions for Evaluations of Tactile Impressions in a Car Interior (자동차 인테리어의 촉감 평가를 위한 대표감성 추출)

  • Park, Nam-Choon;Jeong, Seong-Won
    • Science of Emotion and Sensibility
    • /
    • v.16 no.2
    • /
    • pp.157-166
    • /
    • 2013
  • There are few that evaluate tactile emotion as it pertains to car interior parts, while studies on visual evaluations of car interiors as well as usability tests in a visual sense are numerous. The purpose of this study is to determine typical in-vehicle tactile emotions so that they can be used to evaluate tactile impressions of car interior parts. 52 words related to tactile impressions of car interiors were gathered from a survey in conjunction with an in-vehicle test, interviews with the car salespersons, and an analysis of car reviews. After a factor analysis with 52 words, 10 categories of major tactile emotions were clustered. These were roughness, toughness, friction, comfortability, stiffness, softness, temperature, sleekness, familiarity, and flexibility. These representative tactile emotions regarding a car interior can be used to evaluate tactile impressions of surfaces such as leather, plastic, metal and wood when used as parts in car interiors.

  • PDF

A Web-based Rapid Fabrication System for Optical Components (광학 부품의 웹 기반 쾌속제작 시스템)

  • Baek, Chang-Il;Chu, Won-Sik;Jung, Woo-Byeok;Jeon, Woo;Kim, Chi-Wan;Sung, Mi-Jung;Kang, Ji-Young;An, Sung-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.30-33
    • /
    • 2003
  • In this paper the advantage of web technology applied to Rapid Prototyping is discussed. Two fabrication processes are chosen to be web-enabled. One, a post-process of FDM is developed to provide translucent plastic parts made of medical grade ABS material. The other, a system to fabricate laser machined Light Guide Panel is developed. In order to show the timesaving characteristics of the web-based tools, two websites are implemented (http://nano.gsnu.ac.kr/fdm & http://nano.gsnu.ac.kr/laser). The 3-tier architecture is applied for the Internet communication between designers and manufacturing sites, The integrated design tools and physical manufacturing processes enable designers to submit a new design and to receive the fabricated parts in an expedited manner. Example parts are fabricated using the web-based system to prove the concept of the web-based design and Rapid Prototyping.

  • PDF

Charateristics of the Jointed Steel-Grid Reinforcement and the Application (결합강그리드보강재의 특성 및 적용)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.15-22
    • /
    • 2002
  • To analysis of the embanked slope stability using a jointed reinforcement, the internal stability and the external stability have to be satisfied, respectively. But, because the lengths of ready-made steel-grid were limited, the reinforcements must be connecting themselves to the reinforcing. In this study, the mechanical test was carried out to investigate the tensile failure and the pullout failure at the joint parts of them, which was based on the analysis of reinforced slope in field. Through the tensile tests in mid-air for the jointed steel-grid, the deformation behavior was seriously observed as follows : deformation of longitudinal member, plastic deformation of longitudinal member and of crank part. Those effects were due to the confining pressure and overburden pressure of the surrounding ground. The bearing resistance at jointed part of jointed steel-grid was due to the latter only. The maximum tensile forces were higher about 20kN~27kN than ultimate pullout resistance, but, the results of those was almost the same in mid-soil. The failures of steel-grid occurred at welded point both of longitudinal members and transverse members and of jointed parts. The strength of jointed parts itself got pullout force about 20kN, which was about 65% for ultimate pullout force of the longitudinal members N=2. To the stability analysis of reinforced structure including the reinforced slope, the studying of connection effects at jointed part of reinforcement members must be considered. Through the results of them, the stability of reinforced structures should be satisfied.

A study on the fiber orientation and mechanical characteristics of injection molded fiber-reinforced plastic for the rigidity improvement of automotive parts (자동차 부품의 강성 보강을 위한 섬유강화 플라스틱 사출성형품의 섬유 배향 및 기계적 특성에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Seok-Kwan Hong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.24-33
    • /
    • 2022
  • Fiber-reinforced plastics(FRPs) have excellent specific stiffness and strength, so they are usually used as automotive parts that require high rigidity and lightweight instead of metal. However, it is difficult to predict the mechanical properties of injection molded parts due to the fiber orientation and breakage of FRPs. In this paper, the fiber orientation characteristics and mechanical properties of injection molded specimens were evaluated in order to fabricate automotive transmission side covers with FRPs and design a rib structure for improvement of their rigidity. The test molds were designed and manufactured to confirm the fiber orientation characteristics of each position of the injection molded standard plate-shaped specimens, and the tensile properties of the specimens were evaluated according to the injection molding conditions and directions of specimens. A gusset-rib structure was designed to improve the additional structural rigidity of the target products, and a proper rib structure was selected through the flexural tests of the rib-structured specimens. Based on the evaluation of fiber orientation and mechanical characteristics, the optimization analyses of gate location were performed to minimize the warpage of target products. Also, the deformation analyses against the internal pressure of target product were performed to confirm the rigidity improvement by gusset-rib structure. As a result, it could be confirmed that the deformation was reduced by 27~37% compared to the previous model, when the gusset-rib structure was applied to the joining part of the target products.

Effect of Sowing Density and Number of Seeds Sown on Panax ginseng C. A. Meyer Seedling Stands under Direct Sowing Cultivation in Blue Plastic Greenhouse (인삼 하우스 직파재배 시 파종입수 및 재식밀도가 입모율 향상에 미치는 영향)

  • Mo, Hwang Sung;Park, Hong Woo;Jang, In Bae;Yu, Jin;Park, Kee Choon;Hyun, Dong Yun;Lee, Eung Ho;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.469-474
    • /
    • 2014
  • This study was performed to investigate the effects of sowing density and number of seeds sown on the emergence rate and growth characters of Panax ginseng C. A. Meyer under direct sowing cultivation in a blue plastic greenhouse. Ginseng seedlings, derived from seeds sown directly at different densities (90, 108, 135, and 162 seeds per $162m^2$), were cultivated in sandy loam soil within a blue plastic greenhouse. In contrast to the emergence rate, which decreased with an increase of sowing density, number of survival plant showed an increasing trend. Interestingly, the emergence and number of survival plant were significantly enhanced when 2 or 3 seeds were sown per hole compared with when one seed was sown per hole. Growth of the aerial parts of ginseng were not markedly influenced by sowing density or the number of seeds sown. However, chlorophyll content (SPAD values) increased with an increase in sowing density. Root parameters, such as root length, diameter, and weight, and the number of lateral roots decreased with an increase in sowing density, but were not noticeably influenced by the number of seeds sown. Total saponin content was the highest in the treatment plot containing 135 seeds. Similarly, the content of each ginsenoside was also tended to be higher in this treatment than in other treatment plots. On the basis of the results obtained in this study, it was possible to determine the optimal sowing density and seed number for the direct sowing cultivation of ginseng in blue plastic greenhouse.

A Study on the Bonding Strength Analysis according to the Surface Treatment Characteristics of Aluminum Bar-Cowl Cross Member of Composite Material Injection Insert (복합소재 사출인서트 알루미늄 바 카울크로스멤버 표면처리 특성에 따른 접합강도 분석 연구)

  • Son, Dong il;So, Sangwoo;Hwang, Hyuntae;Choi, Dong hyuk;Choi, Wan gyu;Kim, Sun kyung;Kim, Dae il
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.360-364
    • /
    • 2020
  • Although research and development of existing steel-made Cowl Cross Member(CCM) was carried out with magnesium and plastic to make vehicles lighter, it is difficult to apply them to performance problems in the vehicle's mounting condition. Recently, the company is conducting research on the injection CCM of the composite insert as a lightweight component that is most suitable for mass-production of automotive parts. This is a manufacturing process that inserts composite injection bracket parts into aluminum bar, and the adhesion of the two parts is one of the important factors considering the vehicle's mounting conditions. In this study, the joint strength of Aluminum bar is one of the important factors as a study for the injection of aluminum bar into PA6-GF60 composite material. For the analysis of these research, the method of spraying adhesive to the aluminum bar and the case of knurling treatment have been analyzed and the bonding strength of the direction of rotation and lateral direction has been analyzed for each part between the aluminum bar of the cowl cross member and the shape of the injection component of composite materials.

The Fluidity of the Recycled Thermoplastic Elastomer on the Injection Molding process (사출성형공정에서 엘라스토머 재생재의 유동성)

  • No, B.S.;Han, S.R.;Jeong, Y.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.179-182
    • /
    • 2007
  • In recent, recycling of plastic material has became a major issue due to the landfills and environmental problem. This study investigated fluidity of thermoplastic vulcanizate(TPV), which is for automobile component parts such as weather strip in order to replace ethylene propylene rubber (EPDM). So, using the spiral flow test mold and panel cover mold, we conducted an experiment on fluidity of TPV with injection molding. As results of injection molding experiment, the recycled TPV's flow length was a little bit longer than virgin TPV and a case of panel cover, the filled weight was almost same quantity.

  • PDF

Crystal Dependence in Micro Scratching of Carbon Steel - Groove Formation of Cementite and Ferrite Phases -

  • Taniyama, H.;Eda, H.;Sato, J.;Shimizu, J.;Zhou, L.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.197-198
    • /
    • 2002
  • In order to produce micromachined parts with a great dimensional accuracy, it is important to clarify the influence of heterogeneity and/or discontinuity of workpiece materials on the micromachining process, because almost all structural materials are composed of heterogeneous and/or homogeneous crystal grains at the micro scale. Experiments where JIS S25C steel had been scratched with a diamond triangular pyramid indenter were conducted under a field emission scanning electron microscope (FE-SEM). The difference of plastic deformation at a groove scratched between a pearlite zone and a proeutectoid ferrite zone was investigated through comparison with the groove scratched of a pearlite zone and a proeutectoid ferrite zone.

  • PDF

Automatic Generation of Hexahedral Meshes in Shell Structures (쉘 구조물에서 육면체 요소망의 자동 생성)

  • Lee B.C.;Chae S.W.;Kwon K.Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • This paper describes hexahedral mesh generation for various shell structures, such as automobile bodies, plastic injection mold components and sheet metal parts by using chordal surfaces. After generaling one-layered tetrahedral mesh by an advancing front algorithm, the chordal surfaces are constructed by cutting of tetrahedral elements. Since the choral surfaces are composed of tri/quad elements with poor quality, they are transformed into quadrilateral elements with good quality. Hexahedral elements are then generated by offsetting these quadrilateral elements. The boundary nodes of hexahedral elements are generated on the outer surfaces of the original shell structures. Sample models including nonuniform thickness have been tested to validate the proposed algorithm.