• Title/Summary/Keyword: Plastic insulating materials

Search Result 13, Processing Time 0.023 seconds

Fire Characteristics of Plastic Insulating Materials from Cone Calorimeter Test (콘칼로리미터를 이용한 플라스틱 단열재의 화재특성)

  • 이근원;김관응
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.76-84
    • /
    • 2003
  • This study was designed to investigate fire characteristics of the plastics insulating materials such as a polystyrene foam, polyurethane foam, and polyethylene foam, which is used an insulating materials i3t workplace. The fire characteristics of plastic insulating materials were carried out from the Cone Calorimeter test according to ISO 5660. The experimental materials used were commercial plastic insulating materials by products and their composition is not disclosed by the manufacturer. As the results of this study; the heat release rate of plastic insulating materials was increased with increasing density and heat flux. The peak heat release rate and the average heat release rate for the polyethylene foam in insulating materials were showed the highest, and the peak heat release rate for the polyethylene foam was the highest. The standard of heat release rate with a kind of products and heat flux of irradiance to prevent fire by plastic insulating materials was suggested.

Mechanical Properties of the Laminated Glass Fiber-Reinforced Plastic Composites for Electromagnet Structure System (전자석 구조물용 적층 유리섬유강화 복합재료의 기계적 특성)

  • Park, Han Ju;Kim, Hak Kun;Song, Jun Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.589-595
    • /
    • 2011
  • Laminated glass fiber-reinforced plastic (GFRP) composites were applied to an insulating structure of a magnet system for a nuclear fusion device. Decreased inter-laminar strength by a strong repulsive force between coils which is induced a problem of structural integrity in laminated GFRPs. Therefore, it is important to investigate the inter-laminar characteristics of laminated GFRP composites in order to assure more reliable design and better structural integrity. Three types of the laminated GFRP composites using a high voltage insulating materials were fabricated according to each molding process. To evaluate the grade of the fabricated composites, mechanical tests, such as hardness, tensile and compressive tests,were carried out. The autoclave molding composites satisfied almost of the mechanical properties reguested at the G10 class standard, but the vacuum impregnation (VPI) and Prepreg composites did not.

Analysis of Energy Consumption for Microwave Drying in PC Pellet (PC 펠렛의 마이크로웨이브 건조를 위한 에너지 효율 분석)

  • Lee, Hyun Min;Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.44-48
    • /
    • 2021
  • Semiconductor inspection equipment makes components using materials with insulating properties for functional inspection including current and voltage of semiconductor parts. A representative insulating material is plastic, and plastic is made of a component through an injection process using plastic pellet. When plastic pellets contain excessive moisture, problems such as performance degradation and product surface defects occur. To prevent this, pre-drying is essential, and the heat convective type is the most applied. However, the heat convective type has a problem of low consumption efficiency and a long drying time. Recently, many studies have been conducted on a drying method using microwaves due to high energy efficiency. In this paper, drying was performed using a microwave for drying PC pellets. Energy consumption and drying efficiency analyzed by set up an experimental apparatus of heat convective, microwave, and hybrid(heat convective + microwave) types. It was confirmed that energy consumption and drying efficiency were high when drying using microwaves, and it was confirmed that the hybrid method improved drying performance compared to the heat convective method. It is expected that the research results of this paper can be used as basic data for drying plastic pellets using microwave.

Electrical characteristics of insulating materials for HTS bushing immersed in $LN_2$

  • Choi, J.H.;Kim, W.J.;Shin, H.S.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.10-13
    • /
    • 2011
  • For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. In this paper, the surface flashover characteristics of various insulating materials in $LN_2$ are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The negative impulse breakdown voltage of GFRP is slightly higher than the positive impulse breakdown voltage. The use of glass fiber reinforced plastic (GFRP) and polytetrafluoroethylene (PTFE, Teflon) as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in $LN_2$ and operation of superconducting equipment.

Dielectric Breakdown Characteristics of PPLP and GFRP for HTS DC Cable System (고온초전도 DC 케이블 시스템용 PPLP 및 GFRP의 절연 특성)

  • Kim, S.H.;Choi, J.H.;Kim, W.J.;Jang, H.M.;Lee, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.5-9
    • /
    • 2011
  • DC high-temperature superconducting(HTS) cable system has attracted a great deal of interest from the view point of low loss, dense structure and large capacity. A HTS cable system is made of cable and termination. The insulating materials and insulation technology must be solved for the long life, reliability and compact of cable system. In this paper, we will report on the dielectric breakdown characteristics of insulating materials for HTS cable and termination. The AC, DC and lightning impulse breakdown strength of laminated polypropylene paper(PPLP) and glass fiber reinforced plastic(GFRP) have been measured under nitrogen pressures in the range of 0.l-0.4MPa. PPLP and GFRP are found to have a significantly higher DC breakdown strength. Also, DC surface flashover voltage of negative polarity is slightly higher than that of positive polarity in GFRP.

An Experimental Study on the Strength Characteristic Improvement of the Autoclaved Lightweight Concrete(ALC) containing Quicklime and Silica Fume (생석회와 실리카퓸을 활용한 경량기포콘크리트(ALC)의 강도특성 개선을 위한 실험적 연구)

  • Kim, Young-Ho;Song, Hun
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.4
    • /
    • pp.21-27
    • /
    • 2011
  • These materials in architecturally glass or metal have weaknesses such as inadequate insulating quality, combustibility and toxic gases in fires substance. However, Autoclaved Lightweight Concrete(ALC) has excellent thermal insulation properties and seem to possess the superb insulating quality as substitute of existing exterior materials. This research is to compare experimentally to the kind of the strength properties of ALC materials which mixed with blast furnace slag pounder and silica fume. For the purpose of increasing the strength, the plastic states of ALC evaluate the physical characteristics as microstructure and strength according to various specific gravity. According to the quicklime quantity the compressive strength is proportionate depend on the absolute dried specific gravity. When not putting in 10% quicklime, the compressive strength appeared most lowly with 14.0MPa. When putting in the quicklime, the strength appeared higher with 15.1MPa. And strength of specimen containing 2.25% silica fume is 15.6MPa increased 10.3% than reference specimen 14.0MPa.

Insulation of Winding and Current Lead of the High-Tc Superconducting Magnets for DC Reactor Type SFCL (DC 리액터형 고온초전도한류기용 고온초전도자석의 권선 및 전류리드의 절연)

  • 양성은;배덕권;전우용;김영식;김상현;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.226-229
    • /
    • 2003
  • Following the successful development of practical high temperature superconducting (HTS) wires, there has been renewed activity in the development of superconducting power equipments. HTS equipments must be operated in the coolant, such as liquid nitrogen (L$N_2$) or cooled by cooler, such as GM-cryocooler to maintain the temperature below critical temperature. In this paper, dielectric strength of some insulating materials, such as epoxy, teflon, and glass fiber reinforced plastic (GFRP) in L$N_2$was measured. Surface breakdown voltage of GFRP which is basic property in design of HTS solenoid coil was measured. Epoxy is a goof insulating material but it is fragile at cryogenic temperature. The multi-layer insulating method of current lead is suggested to compensate this fragile property. It consists of teflon tape layer and epoxy layer fixed with texture. Based on these measurements, the 6.6㎸ class HTS magnet for DC reactor type high-T$_{c}$ superconducting fault current limiter (SFCL) was successfully fabricated and tested.d.

  • PDF

Durability and Evaluation of Plastic Insulator for the Outdoor (옥외용 프라스틱 애자의 내구성과 평가)

  • 조한구;강동필;한동희;김인성
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1993.10a
    • /
    • pp.97-102
    • /
    • 1993
  • The application of epxy composite materials for the outdoor insulating systems has some significant advan-tages compared with conventional inorganic materials, that is low weight in combination with high mechanical strength, small dimensions and design versatility. The paper describes the results of high voltage investigations carried out different aging types of epoxy resin insulator and silicone grease coating. The insulators have been exposed 3000 hours to weather-o-meter and 12 months to outdoor. In this connection, the main study of paper is form the basis of develop-ment of principal technologies of epoxy composites which ard: (1)manufacturing of insulator, (2)high vol-tage testing under dry and wet condition, (3)mechani-cal properties, (4)accelerated weather-ometer test and outdoor exposed, artificial polution.

  • PDF

Breakdown Characteristics of Insulation Materials for a Termination of Power Transmission Class HTS Cable

  • Kwag Dong-Soon;Cheon Hyeon-Gweon;Choi Jae-Hyeong;Kim Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.37-42
    • /
    • 2006
  • A research on several characteristics such as volume breakdown and surface discharge of insulators for a termination of power transmission class HTS cable was performed. We investigated the surface discharge of glass fiber reinforced plastic (GFRP) under air, cryogenic nitrogen gas and nitrogen gas media. The breakdown characteristics of these media were studied. Experimental results revealed that flashover voltage greatly depends on pressure, temperature, the kinds of insulating media and voltages, but it is slightly affected by shape and material of electrode. The breakdown voltage of liquid nitrogen, cryogenic nitrogen gas and nitrogen gas deeply depends on the shape and dimension of electrode, kinds of voltages and pressure. Moreover, the breakdown voltage of cryogenic nitrogen gas and flashover voltage of GFRP in the cryogenic nitrogen gas is also influenced by temperature and vapour-mist density of the gas.

Ignition Characteristics and Combustion Gas Analysis of the Plastics Foam (발포 프라스틱의 착화특성 및 연소가스 분석)

  • 이근원;김관응
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.48-52
    • /
    • 2001
  • This study was undertaken to investigate fire risk characteristics of the plastics foam that is used an insulating materials in workplaces. The ignition characteristics and combustion gas of the plastics foam were carried out using the ISO self-Ignition tester, the Cone Calorimeter, and NES combustion analyzer. The experimental materials used were commercial samples and their composition is not disclosed by the manufacturer. As the experimental results, the self-ignition temperature of the plastics foam ranges from $410^{\circ}C$ to $510^{\circ}C$, and the flash-ignition temperature of plastics foam ranges from $370^{\circ}C$ to $450^{\circ}C$. The difference of ignition temperature on density with plastics foam type was smaller since the amount of combustible gas to ignite is not caused enough. The time to ignition of the polyethylene foam in samples of the plastics foam was shorter, and its of polyethylene foam was longer. The concentration of carbon dioxide of the polyethylene foam shows higher in samples of the plastics foam. It is found that the concentration values of carbon monoxide of the plastics foam show very fatality on people during exposure of 30 minutes in fire.

  • PDF