• 제목/요약/키워드: Plastic crystal

검색결과 188건 처리시간 0.033초

Stretchable and Foldable Electronics by Use of Printable Single-Crystal Silicon

  • 안종현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.29-29
    • /
    • 2008
  • Realization of electronics with performance equal to established technologies that use rigid semiconductor wafers, but in lightweight, foldable and stretchable formats would enable many new application possibilities. Examples include wearable systems for personal health monitoring, 'smart' surgical gloves with integrated electronics and electronic eye type imagers that incorporate focal plane arrays on hemispherical substrates. Circuits that use organic or certain classes of inorganic electronic materials on plastic or steel foil substrates can provide some degree of mechanical flexibility, but they cannot be folded or stretched. Also, with few exceptions such systems offer only modest electrical performance. In this talk, I will present a new approach to high performance, flexible and stretchable integrated circuits. These systems combine single-crystal silicon nanoribbons with thin plastic or elastomeric substrates using both "top-down" and "transfer-printing" technologies. The strategies represent promising routes to high performance, flexible and stretchable optoelectronic devices that can incorporate established, high performance inorganic electronic materials.

  • PDF

석출 강화된 단결정의 소성변형에 관한 모델링 (Modeling the Plastic Deformation of Crystals with Thin Precipitates)

  • 김준형;한정석;강태진;정관수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.155-158
    • /
    • 2005
  • Precipitates, present in most commercial alloys, can have a strong influence on strength and hardening behavior of a single crystal. The effect of thin precipitates on the anisotropy of initial slip resistance and hardening behavior of crystals is modeled in this article. For the convenience of the computational derivation and implementation, the material formulation is given in the unrelated intermediate configuration mapped by the plastic part of the deformation gradient. Material descriptions for the considered two phased aggregates consisting in lattice hardening as well as isotropic hardening and kinematic hardening are suggested. Numerical simulations of various loading cases are presented to discuss and assess the performance of the suggested model.

  • PDF

CRYSTAL ORIENTATION OF ELECTROLESS COPPER AND ELECTRODEPOSITED NICKEL FILMS ON THE MAGNETS

  • Chiba, Atsushi;Kobayashi, Katsuyoshi;Miyazaki, Hiroki.;Yoshihara, Sachio;Wu, Wen-Chang
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.372-376
    • /
    • 1999
  • The deposited Cu film on the ferrite magnet was more deposited comparing with that on the plastic magnet. The Cu film became thicker on the S pole comparing with that on the N pole in the both of magnets. The thickness and texture coefficient of deposited copper film affected with direction of line of magnetic force. The difference of pole had little or no effect to the texture coefficient of deposited nickel film. The reaction rate on ferrite magnet and S pole was faster comparing with that on plastic magnet and N pole.

  • PDF

수지첨부에 발생한 멜라닌결핍흑색종의 치험례 (Amelanotic Melanoma on Fingertip: A Case Report)

  • 백혜원;김상화;변준희
    • Archives of Plastic Surgery
    • /
    • 제35권3호
    • /
    • pp.312-315
    • /
    • 2008
  • Purpose: Amelanotic melanoma represents a melanoma with an absence or a small number of melanin pigments and comprises 2% of all melanomas. These melanomas are frequently misdiagnosed, probably because of its nonspecific clinical features and difficulty in diagnosis, resulting in delayed diagnosis and treatment. We report a patient with amelanotic melanoma, who underwent surgical treatment with sentinel lymph node biopsy using gamma probe. Methods: A 32-year-old female was presented with a slowly growing ill-defined, hypopigmented nonerythematous lesion with nail defect on right index finger tip. Preoperative punch biopsy was performed, showing an amelanotic melanoma. Sentinel lymph node biopsy was done using gamma probe(Crystal probe system, CRYSTAL PHOTONICS GmbH, Germany) and confirmed no evidence of regional lymph node metastases. The patient underwent amputation at the proximal interphalangeal joint. Results: Histopathologic findings showed superficial spreading melanoma. There were no melanin pigments in Hematoxylin & Eosin stain but positive immunohistochemical stainings for S-100 protein and Hmb45, which were consistent with amelanotic melanoma. Patient's postoperative course was uneventful without any complication and had no evidence of recurrence of tumor in 6 months follow-up period. Conclusion: Amelanotic melanoma is extremely rare subtype of malignant melanoma with histopathologic findings of atypical melanocytes without melanin pigments. Early detection is crucial since survival is strongly related to tumor thickness and tissue invasion at the time of diagnosis. Wide excision is the treatment of choice and other conjunctive therapy has not been successful.

Fabrication of Large-Scale Single-Crystal Organic Nanowire Arrays for High-Integrated Flexible Electronics

  • 박경선;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.266.1-266.1
    • /
    • 2013
  • Large-scale single-crystal organic nanowire arrays were generated using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with two- or three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

석탄 바닥재와 점토를 이용한 인공경량골재 제조 (Manufacturing artificial lightweight aggregates using coal bottom ash and clay)

  • 김강덕;강승구
    • 한국결정성장학회지
    • /
    • 제17권6호
    • /
    • pp.277-282
    • /
    • 2007
  • 화력발전소에서 발생하는 석탄 바닥재(bottom ash)와 점토를 혼합하여 성형 후, 소성하여 인공경량골재를 제조하고, 소성온도와 조성 변화에 따른 물성을 분석하였다. 바닥재는 입경이 4.75mm 이상인 입자가 13wt% 정도로 거친 분말로 압출성형을 위하여 미분쇄 공정이 필요하였다. 또한 바닥재는 미연탄소(C)를 다량 함유하고 있어 소결 시 C의 산화반응과 이에 따른 가스발생으로 소결체의 경량화를 유도하였다. 점토에 바닥재 첨가량이 증가할수록 소성 지수가 감소하였고 이에 따라 성형체의 성형성이 저하되었으나 바닥재 첨가량이 40wt% 까지의 성형체는 소성 지수 및 소성 한계값이 각각 약 10과 22로서 압출성형이 가능하였다. 바닥재가 $30{\sim}50wt%$ 첨가되고 $1150{\sim}1200^{\circ}C$ 범위에서 소결된 골재는 부피비중 $1.3{\sim}1.5$, 흡수율 $14{\sim}16%$를 나타냈고 따라서 고층빌딩이나 교량 등의 골재대체재로써의 가능성이 확인되었다.

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

Fabrication of a Flexible Cholesteric Liquid Crystal Display based on Pixel Isolation Method

  • Kwon, Ki-Sun;Kang, Dae-Seung
    • Journal of Information Display
    • /
    • 제6권1호
    • /
    • pp.8-11
    • /
    • 2005
  • A flexible reflective cholesteric liquid crystal display (ChLCD) is fabricated on plastic substrates by using the pixel isolation method. The polymer walls between pixels and the polymer layers in the pixels are formed by two-step UV irradiation. Electro-optical response of the ChLCD with polymer wall and layer is studied and compared with conventional bistable ChLCD cells.

New Liquid Crystal-Embedded PVdF-co-HFP-Based Polymer Electrolytes for Dye-Sensitized Solar Cell Applications

  • Vijayakumar, G.;Lee, Meyoung-Jin;Song, Myung-Kwan;Jin, Sung-Ho;Lee, Jae-Wook;Lee, Chan-Woo;Gal, Yeong-Soon;Shim, Hyo-Jin;Kang, Yong-Ku;Lee, Gi-Won;Kim, Kyung-Kon;Park, Nam-Gyu;Kim, Suhk-Mann
    • Macromolecular Research
    • /
    • 제17권12호
    • /
    • pp.963-968
    • /
    • 2009
  • Liquid crystal (LC; E7 and/or ML-0249)-embedded, poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based, polymer electrolytes were prepared for use in dye-sensitized solar cells (DSSCs). The electrolytes contained 1-methyl-3-propylimidazolium iodide (PMII), tetrabutylammonium iodide (TBAI), and iodine ($I_2$), which participate in the $I_3^-/I^-$ redox couple. The incorporation of photochemically stable PVdF-co-HFP in the DSSCs created a stable polymer electrolyte that resisted leakage and volatilization. DSSCs, with liquid crystal(LC)-embedded PVdF-co-HFP-based polymer electrolytes between the amphiphilic ruthenium dye N719 absorbed to the nanocrystalline $TiO_2$ photoanode and the Pt counter electrode, were fabricated. These DSSCs displayed enhanced redox couple reduction and reduced charge recombination in comparison to that fabricated from the conventional PVdF-co-HFP-based polymer electrolyte. The behavior of the polymer electrolyte was improved by the addition of optimized amounts of plasticizers, such as ethylene carbonate (EC) and propylene carbonate (PC). The significantly increased short-circuit current density ($J_{sc}$, $14.60\;mA/cm^2$) and open-circuit voltage ($V_{oc}$, 0.68 V) of these DSSCs led to a high power conversion efficiency (PCE) of 6.42% and a fill factor of 0.65 under a standard light intensity of $100\;mW/cm^2$ irradiation of AM 1.5 sunlight. A DSSC fabricated by using E7-embedded PVdF-co-HFP-based polymer electrolyte exhibited a maximum incident photon-to-current conversion efficiency (IPCE) of 50%.