• Title/Summary/Keyword: Plastic Zone Size

Search Result 126, Processing Time 0.024 seconds

An Evaluation on the Effect of Reversed Plastic Zone on the Fatigue Crack Opening Behavior under 2-D Plane Stress (2차원 평면응력 상태에서 되풀이 소성역이 피로균열 열림 현상에 미치는 영향에 관한 연구)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1078-1084
    • /
    • 2005
  • The relationship between fatigue crack opening behavior and the reversed plastic zone sizes is studied. An elastic-plastic finite element analysis (FEA) is performed to examine the opening behavior of fatigue crack, where the contact elements are used in the mesh of the track tip area. The smaller element size than reversed plastic zone size is used fer evaluating the distribution of reversed plastic zone. In the author's previous results the FEA could predict the crack opening level, which crack tip elements were in proportion to the theoretical reversed plastic zone size. It is found that the calculated reversed plastic zone size is related to the theoretical reversed plastic zone size and crack opening level. The calculated reversed plastic zone sizes are almost equal to the reversed plastic zone considering crack opening level obtained by experimental results. It can be possible to predict the crack opening level from the reversed plastic zone size calculated by finite element method. We find that the experimental crack opening levels correspond with the opening values of contact nodes on the calculated reversed plastic zone of finite element simulation.

Relationship between Side-Necking and Plastic Zone Size at Fracture (파괴 시 발생하는 측면함몰과 소성영역크기와의 관계)

  • Kim, Do-Hyung;Kim, Dong-Hak;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.365-371
    • /
    • 2004
  • Generally, fracture of a material is influenced by plastic zone size developed near the crack tip. Hence, according to the relative size of plastic zone in the material, the mechanics as a tool for analyzing the fracture process are classified into three kinds, that is, Linear Elastic Fracture Mechanics, Elastic Plastic Fracture Mechanics, Large Deformation Fracture Mechanics. Even though the plastic zone size is such an important parameter, the practical measurement techniques are very limited and the one for in-situ measurement is not virtually available. Therefore, elastic-plastic FEA has been performed to estimate the plastic zone size. In this study, it is noticed that side necking at the surface is a consequence of plastic deformation and lateral contraction and the relation between the plastic zone and side necking is investigated. FEA for modified boundary layer models with finite thickness, various mode mixities $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$ and strain hardening exponent n=3, 10 are performed. The results are presented and the implication regarding to application to experiment is discussed.

  • PDF

A Study on the Measurement of Elastic-Plastic Zone at the Crack Tip under Cyclic Loading using ESPI System. (전자스페클 간섭시스템을 이용한 피로하중을 받는 균열선단에서 탄소성 영역 측정에 관한 연구)

  • Kim, Kyung-Su;Shin, Byung-Chun;Shim, Chun-Sik;Park, Jin-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.140-144
    • /
    • 2002
  • In this paper, the plastic zone size ahead of the crack tip of DENT specimen and the crack growth length under cyclic loading were measured by ESPI system. These results of the plastic zone size measured by ESPI system were compared with the plastic zone size proposed by Irwin. The results of tile crack growth length measured by it were also compared with them measured by the image analysis system. It is confirmed that it is possible to measure the plastic zone and crack growth length.

  • PDF

A Study on the Behaviour of Plastic Deformation in Weld HAZ of Mild Steel (연강 용접열영향부의 소성변형거동에 관한 연구 1)

  • 박창언;정세희
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.38-45
    • /
    • 1989
  • In this study, in order to evaluate the shape and the size of the plastic zone at the notch tip before stable crack growth, a newly developed technique for plastic strain measurement, that is, the recrystallization-etching technique was applied to observe the intense strain zone at the notch tip of weld HAZ. 1) The recrystallized specimens showed that the amount of the intense strain zone, more than 20% plastic zone, was quantitatively observed as the plane strain state during the growth of the plastic zone. 2) The behavior of plastic deformation at midsection are different for parent and weld HAZ. In addition, the micro crack initiation occurs at midsection, parent and weld HAZ when the crack opening displacement(COD) value is .delta.$_{t}$=0.4mm. 3) The plastic zone for parent proceeds in the forward direction at notch tip and for weld HAZ in the right and left direction at the notch tip. 4) The relation between plastic strain energy(Wp) and COD(.delta.$_{t}$) depended on yield stress, gradient and plastic strain size.ize.

  • PDF

A Study on the Determination of Closing Level for Finite Element Analysis of Fatigue Crack Closure

  • Choi, Hyeon-Chang
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.401-407
    • /
    • 2000
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using 4-node isoparametric elements can predict fatigue crack closure behavior. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. The crack opening level for the constant mesh size increases linearly from initial crack growth. The crack opening level for variable mesh size, is almost flat after crack tip has passed the monotonic plastic zone. The prediction of crack opening level using the variable mesh size proportioning the reversed plastic zone size with the opening stress intensity factors presents a good agreement with the experimental data regardless of stress ratios.

  • PDF

A Study on Plastic Zone at the Crack Tip under Cyclic Loading by FEM (유한요소법을 이용한 피로하중을 받는 균열선단의 소성영역크기에 대한 연구)

  • Kim, Kyung-Su;Shim, Chun-Sik;Lee, Wook-Jae;Cho, Hyung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.151-154
    • /
    • 2002
  • In this paper, the effect of the crack growth length on the plastic zone size at the crack tip and the crack growth lives of the DENT specimen under constant amplitude cyclic loading were studied. The plastic zone size was calculated by nonlinear static method in commercial finite element analysis program, MSC/NASTRAN and the crack growth lives were also calculated by using compliance function considering geometric shape in MSC/FATIGUE. The calculated plastic zone size increased proportional to the crack length. And comparison of calculated plastic zone size and crack growth lives with the experimental results shows a good agreement.

  • PDF

Crack tip plastic zone under Mode I, Mode II and mixed mode (I+II) conditions

  • Ayatollahi, M.R.;Sedighiani, Karo
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.575-598
    • /
    • 2010
  • The shape and size of the plastic zone around the crack tip are analyzed under pure mode I, pure mode II and mixed mode (I+II) loading for small scale yielding and for both plane stress and plane strain conditions. A new analytical formulation is presented to determine the radius of the plastic zone in a non-dimensional form. In particular, the effect of T-stress on the plastic zone around the crack tip is studied. The results of this investigation indicate that the stress field with a T-stress always yields a larger plastic zone than the field without a T-stress. It is found that under predominantly mode I loading, the effect of a negative T-stress on the size of the plastic zone is more dramatic than a positive T-stress. However, when mode II portion of loading is dominating the effect of both positive and negative T-stresses on the size of the plastic zone is almost equal. For validating the analytical results, several finite element analyses were performed. It is shown that the results obtained by the proposed analytical formulation are in very good agreements with those obtained from the finite element analyses.

Finite Element Analysis for Fatigue Crack Closure Behavior Using Reversed Plastic Zone Size (되풀이 소성영역 크기를 이용한 피로 균열 닫힘 거동의 유한요소해석)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1703-1711
    • /
    • 2003
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behaviour of fatigue cracks in residual stress fields and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using contact elements can predict fatigue crack closure behaviour. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. Specially, the mesh of element sizes depending upon the reversed plastic zone size included the effect of crack opening point can precisely predict the opening level. By using the concept of the mesh of element sizes depending upon the reversed plastic zone size included the effect of crack opening point, the opening level of fatigue crack can be determined very well.

The effect of micro pore on the characteristics of crack tip plastic zone in concrete

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.107-127
    • /
    • 2016
  • Concrete is a heterogeneous material containing many weaknesses such as micro-cracks, pores and grain boundaries. The crack growth mechanism and failure behavior of concrete structures depend on the plastic deformation created by these weaknesses. In this article the non-linear finite element method is used to analyze the effect of presence of micro pore near a crack tip on both of the characteristics of crack tip plastic zone (its shape and size) and crack growth properties (such as crack growth length and crack initiation angle) under pure shear loading. The FE Code Franc2D/L is used to carry out these objectives. The effects of the crack-pore configurations and the spacing between micro pore and pre-excising crack tip on the characteristics of crack tip plastic zone and crack growth properties is highlighted. Based on the obtained results, the relative distance between the crack tip and the micro pore affects in very significant way the shape and the size of the crack tip plastic zone. Furthermore, crack growth length and crack initiation angle are mostly influenced by size and shape of plastic zone ahead of crack tip. Also the effects of pore decrease on the crack tip by variation of pore situation from linear to perpendicular configuration. The critical position for a micro pore is in front of the crack tip.

Plastic Zone Size in a Ductile Layer with an Interface Crack - Case Study for Dissimilar Substrates - (계면균열을 가진 연성접합재의 소성영역 크기 - 이종 모재의 경우 -)

  • Kim, Dong-Hak;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2003
  • Using the modified Irwin model and the modified Dugdale model, the plastic zone size near the interface crack tip in a ductile layer bonding two dissimilar elastic substrates is predicted. Validity of the models is examined by finite element method. The effects of several factors such as the mode mixity, T-stress and material properties are explored. The plastic zone size significantly decreases with the Poisson's ratio of the ductile layer.