• 제목/요약/키워드: Plastic Strain Hardening

검색결과 305건 처리시간 0.025초

멱함수 가공경화 모델을 이용한 복합실린더의 자긴가공해석 (Autofrettage Analysis of Compound Cylinder with Power Function Strain Hardening Model)

  • 박재현;이영신;심우성;김재훈;차기업;홍석균
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.488-495
    • /
    • 2008
  • In order to achieve long fatigue lifetimes for cyclically pressurized thick cylinders, multi-layered compound cylinder has been proposed. Such compound cylinder involves a shrink-fit procedure incorporating a monobloc tube which has previously undergone autofrettage. The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage mo dels are based on different simplified material strain-hardening models, which is assumed that combination of linear strain-hardenig and power strain-hardening model. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material was proposed. The model was obtained using the von Mises yield criterion and plane strain condition. The tensile-compressive stress-strain curve was obtained by experiment. The parameters needed in the model were determined by fitting the actual tensile-compressive curve of the material. Finally, strain- hardening model was compared with elastic-perfectly plastic model.

금속재료 변형률속도 경화의 미시적 관찰 (Microscopic Investigation of the Strain Rate Hardening for Metals)

  • 윤종헌;허훈;허무영;강형구;박찬경;서주형;강주석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.352-355
    • /
    • 2007
  • Polycrystalline materials such as steels(BCC) and aluminum alloys(FCC) show the strain hardening and the strain rate hardening during the plastic deformation. The strain hardening is induced by deformation resistance of dislocation glide on some crystallographic systems and increase of the dislocation density on grain boundaries or inner grain. However, the phenomenon of the strain rate hardening is not demonstrated distinctly. In this paper, tensile tests for various strain rates are performed in the rage of $10^{-2}$ to $10^2s^{-1}$ then, specimens are extracted on the same strain position to investigate the microscopic behavior of deformed materials. The extracted specimen is investigated by using the electron backscattered diffraction(EBSD) and transmission electron microscopy(TEM) results which contain grain size, grain shape, aspect ratio and dislocation substructure.

  • PDF

가공경화지수 및 변형율속도 경화지수의 변화가 마찰상수 결정에 미치는 영향 (Effects of Work-Hardening Exponent and Strain-Rate Hardening Exponent on the Determination of Friction Factor)

  • 박치용;양동열
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.42-51
    • /
    • 1992
  • The ring compression test has been widely employed as an experimental means to determine the friction factor. The calibration curves are obtained by the rigid-plastic finite element analysis for various work-hardening exponent and strain-rate hardening exponent. The effects of work-hardening exponent and strain-rate hardening exponent are thoroughly studied and discussed from the finite element computation. The change of friction factor during height reduction in ring compression is also discussed. Then, the method to estimate the change of friction factor during ring compression is proposed.

  • PDF

철강재료 변형률속도 경화의 미시적 관찰 (Microscopic Investigation of the Strain Rate Hardening for Polycrystalline Metals)

  • 윤종헌;박찬경;강주석;서주형;허무영;강형구;허훈
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.46-51
    • /
    • 2008
  • Polycrystalline materials such as steels(BCC) and aluminum alloys(FCC) show the strain hardening and the strain rate hardening during the plastic deformation. The strain hardening is induced by deformation resistance of dislocation glide on some crystallographic systems and increase of the dislocation density on grain boundaries or inner grain. However, the phenomenon of the strain rate hardening is not demonstrated distinctly in the rage of $10^{-2}$ to $10^2/sec$ strain rate. In this paper, tensile tests for various strain rates are performed in the rage of $10^{-2}$ to $10^2/sec$ then, specimens are extracted on the same strain position to investigate the microscopic behavior of deformed materials. The extracted specimens are investigated by using the electron backscattered diffraction(EBSD) and transmission electron microscopy(TEM) results which show the effect of texture orientation, grain size and dislocation behavior on the strain rate hardening.

Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading

  • Shariati, M.;Hatami, H.;Torabi, H.;Epakchi, H.R.
    • Structural Engineering and Mechanics
    • /
    • 제44권6호
    • /
    • pp.753-762
    • /
    • 2012
  • The ratcheting characteristics of cylindrical shell under cyclic axial loading are investigated. The specimens are subjected to stress-controlled cycling with non-zero mean stress, which causes the accumulation of plastic strain or ratcheting behavior in continuous cycles. Also, cylindrical shell shows softening behavior under symmetric axial strain-controlled loading and due to the localized buckling, which occurs in the compressive stress-strain curve of the shell; it has more residual plastic strain in comparison to the tensile stress-strain hysteresis curve. The numerical analysis was carried out by ABAQUS software using hardening models. The nonlinear isotropic/kinematic hardening model accurately simulates the ratcheting behavior of shell. Although hardening models are incapable of simulating the softening behavior of the shell, this model analyzes the softening behavior well. Moreover, the model calculates the residual plastic strain close to the experimental data. Experimental tests were performed using an INSTRON 8802 servo-hydraulic machine. Simulations show good agreement between numerical and experimental results. The results reveal that the rate of plastic strain accumulation increases for the first few cycles and then reduces in the subsequent cycles. This reduction is more rapid for numerical results in comparison to experiments.

신장계에 의한 소성변형비 자동측정법의 평가에 관한 연구 (A Study on the Evaluation of the Automatic Measurement Method of Plastic Strain Ratio by Two Extensometers)

  • 김인수
    • 소성∙가공
    • /
    • 제12권5호
    • /
    • pp.504-512
    • /
    • 2003
  • The plastic strain ratios(R-values) of low carbon steel sheets were determined by the automatic strain measurement method using two extensometers, the indirect photo method for the same tensile specimen during tensile test and the indirect method for the specimen after tensile test. The experimental results showed that the measured plastic strain ratios from the automatic strain measurement method using two extensometers coincided with those from the indirect photo method and the indirect method for all tensile specimens. In addition, the strain dependence of plastic strain ratios could be continuously recorded and the anisotropy of the strength coefficient, K, and strain hardening exponent, n, could be automatically calculated in three directions by computer through the use of two extensometers. The experimental results showed that the strain dependence of R-value was related to the anisotropy of strain hardening exponent in low carbon steel sheets.

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

  • Darvishvand, Amer;Zajkani, Asghar
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.223-232
    • /
    • 2019
  • Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.

조선 해양 구조물용 강재의 소성 및 파단 특성 V: 온도 의존성을 고려한 변형률 속도에 관한 실험적 연구 (Plasticity and Fracture Behaviors of Marine Structural Steel, Part V: Effects of Strain Rate and Temperature)

  • 정준모;임성우;김경수
    • 한국해양공학회지
    • /
    • 제25권3호
    • /
    • pp.73-84
    • /
    • 2011
  • This is the fifth in a series of companion papers dealing with the dynamic hardening properties of various marine structural steels at intermediate strain rates. Five steps of strain rate levels (0.001, 1, 10, 100, 200/s) and three steps of temperature levels (LT ($-40^{\circ}C$), RT, and HT ($200^{\circ}C$)) were taken into account for the dynamic tensile tests of three types of marine structural steels: API 2W50 and Classifications EH36 and DH36. The total number of specimens was 180 pieces. It was seen that the effects of dynamic hardening became clearer at LT than at RT. Dynamic strain aging accompanying serrated flow stress curves was also observed from high temperature tests for all kinds of steels. The dynamic hardening factors (DHFs) at the two temperature levels of LT and RT were derived at the three plastic strain levels of 0.05, 0.10, 0.15 from dynamic tensile tests. Meanwhile, no DHFs were found for the high temperature tests because a slight negative strain rate dependency due to dynamic strain aging had occurred. A new formulation to determine material constant D in a Cowper-Symonds constitutive equation is provided as a function of the plastic strain rate, as well as the plastic strain level. The proposed formula is verified by comparing with test flow stress curves, not only at intermediate strain rate ranges but also at high strain rate ranges.

Strain Hardening Behaviour of PM Alloys with Heterogeneous Microstructure

  • Straffelini, Giovanni
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.928-929
    • /
    • 2006
  • Tensile stress-strain and dynamic acoustic resonance tests were performed on Fe-C-Ni-Cu-Mo high-strength steels, characterized by a heterogeneous matrix microstructure and the prevalence of open porosity. All materials display the first yielding phenomenon and, successively, a continuous yielding behavior. This flow behavior can be described by the Ludwigson equation and developes through three stages: the onset of localized plastic deformation at the pore edges; the evolution of plastic deformation at the pore necks (where the austenitic Ni-rich phase is predominant); the spreading of plastic deformation in the interior of the matrix. The analytical modeling of the strain hardening behavior made it possible to obtain the boundaries between the different deformation stages.

  • PDF

다공질 금속의 비탄성거동을 위한 특수 구성방정식의 형성 II (Formulation of Special Constitutive Equations for Inelastic Responses of Porous Metals(II) - Elastic, Plastic Strain Hardening Material -)

  • 김기태;서정
    • 대한기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.64-71
    • /
    • 1988
  • 본 논문에서는 기공의 붕괴에 의한 변형경화 뿐 아니라 모재의 변형경화도 고려하여 더 일반적인 다공질 금속의 특수 구성 방정식 등을 제안하였다.