• 제목/요약/키워드: Plastic Injection Product

검색결과 94건 처리시간 0.027초

PC 펠렛의 마이크로웨이브 건조를 위한 에너지 효율 분석 (Analysis of Energy Consumption for Microwave Drying in PC Pellet)

  • 이현민;김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.44-48
    • /
    • 2021
  • Semiconductor inspection equipment makes components using materials with insulating properties for functional inspection including current and voltage of semiconductor parts. A representative insulating material is plastic, and plastic is made of a component through an injection process using plastic pellet. When plastic pellets contain excessive moisture, problems such as performance degradation and product surface defects occur. To prevent this, pre-drying is essential, and the heat convective type is the most applied. However, the heat convective type has a problem of low consumption efficiency and a long drying time. Recently, many studies have been conducted on a drying method using microwaves due to high energy efficiency. In this paper, drying was performed using a microwave for drying PC pellets. Energy consumption and drying efficiency analyzed by set up an experimental apparatus of heat convective, microwave, and hybrid(heat convective + microwave) types. It was confirmed that energy consumption and drying efficiency were high when drying using microwaves, and it was confirmed that the hybrid method improved drying performance compared to the heat convective method. It is expected that the research results of this paper can be used as basic data for drying plastic pellets using microwave.

사출 금형 수축률 산정에 관한 연구 (A Study on injection mold shrinkage estimates)

  • 최광혁;한성렬;이춘규
    • Design & Manufacturing
    • /
    • 제10권3호
    • /
    • pp.30-33
    • /
    • 2016
  • It is true that the plastic shrinkage is inevitable. Shrinkage rate in effect at the time of mold design will soon determine the size of the global product. Process for the shrinkage of the plastic that provides how made, yet it has identified a process for making the question whether the shrinkage that can be trusted, and by the experimental results were as follows: as shrinkage, see ISO but, according to circumstances the process can go to the agreement between the parties. shrinkage ratio of the pressure sensor installed in the specimen mold is essential, amount of pressure sensor is that it is appropriate approximately 2-3. proper holding pressure is a significant effect on shrinkage Mitch, so that the effect of selecting the contraction ratio data according to the appropriate holding pressure during mold making. shrinkage CAE analysis results are difficult to utilize in the mold-making chamber. Based on these results, it concluded by looking forward to the improved products produced shrinkage.

특징기반 플라스틱 사출제품을 위한 유전자 알고리즘과 Support Vector Regression 기반의 하이브리드 비용 평가 모델 (A Genetic Algorithm and Support Vector Regression based Hybrid Cost Estimation Model for Feature-based Plastic Injection Products)

  • 서광규
    • 대한안전경영과학회지
    • /
    • 제14권3호
    • /
    • pp.269-276
    • /
    • 2012
  • 플라스틱 사출 제품은 다양한 가전제품과 하이테크 제품에 널리 사용되고 있다. 그러나 현재의 치열한 경쟁적 비즈니스 환경에서 플라스틱 사출 제품 제조업자들은 고객을 만족시키면서 경쟁력을 얻기 위하여 다른 경쟁자들보다 먼저 새로운 제품을 시장에 출시하고 신제품의 개발기간을 줄이기 위한 노력을 할 여유가 부족하다. 따라서 무한경쟁의 시장에서 살아남기 위해서는 제조업자들은 시장 마켓 점유를 빠르게 올리는 것과 동시에 제품의 가격 경쟁력을 가져야 한다. 특징기반 모델의 구조는 현재 연구에서 3D 제작 도구로서 일반적으로 적용되고 있으며 신제품 개발 엔지니어들이 새로운 제품의 개념을 개발하는 데에도 널리 사용되고 있다. 본 연구에서는 특징기반 플라스틱 사출제품을 위한 유전자 알고리즘과 Support Vector Regression (SVR) 기반의 새로운 하이브리드 비용 평가 모델을 제안한다. 제안하는 하이브리드 모델은 기존의 플라스틱 사출제품의 비용평가절차와 계산을 위해 필요로 하는 변수들을 극적으로 간단하게 하고 줄일 수 있다. 사례연구에서는 제안하는 하이브리드 모델과 기존의 multilayer perceptron networks (MLP) 및 pure SVR과의 비교분석을 통하여 제안모델이 플라스틱 사출 제품의 개발단계에서의 비용평가문제를 해결하는데 효율성과 효과성이 있음을 입증한다.

초박육 사출성형에서 Moldflow 시뮬레이션을 활용한 전자부품의 형상 최적화 (Dimensional Optimization of Electric Component in Ultra Thin-wall Injection Molding by Using Moldflow Simulation)

  • 이정희;배현선;곽재섭
    • 한국기계가공학회지
    • /
    • 제19권7호
    • /
    • pp.1-6
    • /
    • 2020
  • Micro-structure components applied to various disciplines are steadily demanded with lighter weight and better quality. This is because that ultra thin-wall injection molding has been paid attention with a lot of benefits such as cost reduction, shorter process period, and so forth. However, this technology is complicate and difficult to obtain high quality of products compared with conventional injection molding due to warpage caused by uneven shrinkage and molecular orientation. Since warpage of products directly affects product quality and overall performance of devices, it is essential to predict deformation behavior to achieve high precision of molded products. Therefore, this study aims to find out adequate thin-wall mold design for FPC connector housing by employing Moldflow simulation before application. In addition, experimental research is performed by using a fabricated mold structure based on simulated results to prove accuracy and reliability of the suggested simulation for warpage analysis.

자동차 범퍼금형에서의 게이트 형상이 제품 성형에 미치는 영향 (The effect of Gate type on Injection Molding of Automotive Bumper)

  • 황시현;지성대;김명기;권윤숙;정영득
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1724-1727
    • /
    • 2005
  • Injection molding process is one of the processes that can mold plastic product as low cost. However, manufacturing process of automobile bumper mold has lots of trial and error. Especially, desiging of a huge mold such as bumper mold is needed to establish a design standard for runner system. In this study, CAE was conducted to observe the variation of melt-flow by changing runner and gate type in automobile bumper mold as preceding study for a standard design of runner system.

  • PDF

급속광조형 마스터 모델을 이용한 제품 및 간이 금형 제작 (Fabrication of Mold and Part by Using SLA Master Models)

  • 박문선;김대환;강범수
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.7-13
    • /
    • 1999
  • The potential for growth and the future impact of Rapid Prototyping that it will have on the product development cycle are enormous. Since making tools, precedes making parts, Rapid Tooling becomes widely used in automobile, aerospace, electronic, and other industries. In this study, master models formed by Rapid Prototyping of Stereolithography have been applied for vacuum casting to obtain silicone patterns which have transformed into epoxy models. The epoxy models have been measured to check dimension errors, and tested their functions. These checking and measurement have provided information on plastic injection possibilities and data for die design, Temporary die making with the materials of Aluminum/Epoxy and powder injection metal (PIM) has also been discussed in terms of hardness, surface roughness, and SEM microstructures.

  • PDF

고정밀 플라스틱 제품 성형을 위한 다수 캐비티 사출금형 및 성형 요소기술에 관한 연구 (A study on multi-cavity injection mold and molding elemental technology for plastic product of high precision tolerance)

  • 손종인;김철기;송병욱
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.57-62
    • /
    • 2023
  • As a representative method for mass production, a multi-cavity type mold capable of simultaneously molding products of the same shape can be applied. It has the advantage of improving the productivity from several times to several tens of times, but it may cause disadvantages which is the quality deviation with each cavity. This study, therefore, has tried to increase the cavity filling balance by using a melt flipper and a flow distance control part in the runner part of the mold. Along with this, the design and manufacturing of air vents during injection molding have been verified through experimental methods to achieve a higher level of multi-cavity filling balance and dimensional accuracy.

사출 성형 공정에서의 변수 최적화 방법론 (Methodology for Variable Optimization in Injection Molding Process)

  • 정영진;강태호;박정인;조중연;홍지수;강성우
    • 품질경영학회지
    • /
    • 제52권1호
    • /
    • pp.43-56
    • /
    • 2024
  • Purpose: The injection molding process, crucial for plastic shaping, encounters difficulties in sustaining product quality when replacing injection machines. Variations in machine types and outputs between different production lines or factories increase the risk of quality deterioration. In response, the study aims to develop a system that optimally adjusts conditions during the replacement of injection machines linked to molds. Methods: Utilizing a dataset of 12 injection process variables and 52 corresponding sensor variables, a predictive model is crafted using Decision Tree, Random Forest, and XGBoost. Model evaluation is conducted using an 80% training data and a 20% test data split. The dependent variable, classified into five characteristics based on temperature and pressure, guides the prediction model. Bayesian optimization, integrated into the selected model, determines optimal values for process variables during the replacement of injection machines. The iterative convergence of sensor prediction values to the optimum range is visually confirmed, aligning them with the target range. Experimental results validate the proposed approach. Results: Post-experiment analysis indicates the superiority of the XGBoost model across all five characteristics, achieving a combined high performance of 0.81 and a Mean Absolute Error (MAE) of 0.77. The study introduces a method for optimizing initial conditions in the injection process during machine replacement, utilizing Bayesian optimization. This streamlined approach reduces both time and costs, thereby enhancing process efficiency. Conclusion: This research contributes practical insights to the optimization literature, offering valuable guidance for industries seeking streamlined and cost-effective methods for machine replacement in injection molding.

플라스틱 사출금형의 간섭 검사에 의한 사이드 코어의 설계 (Design of Side Cores of Plastic Injection Mold with Interference Check)

  • 신기훈;이건우
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1064-1074
    • /
    • 1992
  • 본 연구에서는 제품에 분할선을 입력하여 상, 하판 금형을 만든 후 제품의 추 출을 방해하는 금형의 면들을 간섭검사를 통하여 찾아내는 프로그램을 개발하였다. 그리고 찾아낸 간섭면들을 이용하여 금형 설계자가 적합한 형상의 사이드 코어를 설계 할 수 있도록 설계과정을 CAD화 하였다.물론, 내부적으로는 사이드 토어의 생성과 동시에 금형의 형상도 수정되도록 프로그램 되어있다. 이러한 일련의 과정은 Fig.2 와 같이 나타낼 수 있는데 앞으로 2장에서는 금형의 생성 및 간섭면 검색 과정을 다루 고 3장에서는 사이드 코어의 설계 및 금형의 수정과정을 단계별로 자세히 설명하도록 하겠다. 그리고 결론에서는 현재 갭ㄹ한 프로그램의 효용 및 적용 범위, 문제점 및 개선 방안 등에 대해서 논의해 보겠다.

TPE를 적용한 자동차 윈도우 모터커버의 개발 (Development of Automobile Windows Motor Cover by Thermoplastic Elastomer(TPE))

  • 조영태;고범용;이충호
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.847-851
    • /
    • 2010
  • It was attempted to develop an auto part by over molding injection mold that produces precision products in high productivity with use of an eco-friendly TPE substitute material for NBR. NBR is currently used in motor gear cover, one of the key parts in motor module for auto doors. Gear cover is composed of plastics and rubber mostly today, which requires a two (2) step process for production using two presses of different types. A hot press is used at this time for forming the rubber, which has drawback of requiring a rather long forming time of 400 seconds for one forming process. Even though this difficulty is overcome by reducing production time through employment of multi-cavity molds, time for forming process must be shortened for improvement of the productivity eventually, and the existing method of insert injection for products that have been formed with plastic material must be outgrown. In this point of view, over molding injection using TPE has a big advantage. Forming time is shortened to 54 seconds, and working the two (2) processes in series by one (1) press could solve the durability problem caused by deflection of the plastics, not to mention shortening the process time. Enhancement of productivity by almost 80% and improvement in the accuracy of the product could thus be achieved.