• Title/Summary/Keyword: Plastic Injection Product

Search Result 94, Processing Time 0.021 seconds

Injection/compression molding for micro pattern (미세패턴 성형을 위한 사출 압축 성형 공정 기술)

  • Yoo Y.E.;Kim T.H.;Kim C.W.;Je T.J.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.100-104
    • /
    • 2005
  • The injection molding is very effective process for various plastic products due to its high productivity. It is also good fur precise products like optical parts. Various thermoplastic materials are also available with this injection molding process. In recent, however, as the overall size of the product increases and micro or nano scale of patterns are applied to the products, we now have some problems such as low fidelity of the replication of the pattern, high molding pressure, or warpage from the in-mold stress. Injection/compression molding is studied to overcome those problems in molding large thin plate with micro pattern array on its surface. An injection compression mold is designed to 3 pieces mold for side gate. We install 4 pressure transducers and 9 thermocouples to measure the melt pressure and surface temperature in the cavity during the process. As a result, the maximum molding pressure for injection compression molding is reduced to 1/3 compared to injection molding and the uniformity of the pressure in the cavity is enhanced by about 15%.

  • PDF

Finite element analysis of a injection blow molding process for the thick-walled PET bottle (후육 벽 PET 용기에 대한 사출 블로우 성형의 유한요소해석)

  • Hong, Seok-Kwan;Song, Min-Jae;Ko, Young-Bae;Cha, Baeg-Soon
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.5-12
    • /
    • 2018
  • Plastic containers which provides the opportunity to reduce transportation costs are lighter and less brittle than glass containers. As a results, efforts to replace glass with plastic are ongoing. The blow molding method is a typical approach in producing plastic containers. Single-stage injection blow molding (ISBM) is one of the blow molding methods. However, the difficulty in controlling the temperature during the injection molding process is considered its main disadvantage. In this study, ISBM process analysis of relatively thick walled containers such as cosmetic containers is carried out. The initial temperature distribution of the preform is deemed to be the most influential factor in the accuracy of blow molding for the thick vessel. In order to accurately predict this, all heat transfer processes of the preform are considered. The validity of this analytical procedure is verified by comparing the cross-sectional thickness with the actual product. Finally, the validated analytical method is used to evaluate the factors affecting the thickness of the final molded part. The ISBM analysis technique for thick walled vessels developed through this study can be used as an effective predictor for preform design and blow process.

Design of Gate Location in Injection Molding of a Dashboard Using Dummy Runner (모조 러너를 이용한 계기판 사출성형의 게이트 위치 설계)

  • Han, Gyeong-Hui;Choe, Du-Sun;Kim, Hong-Seok;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1575-1582
    • /
    • 2001
  • Injection molding is widely used in producing various plastic parts due to its high productivity, and the demand for injection molded products with high precision is increasing. To achieve successful product quality and precision, the design of gating and runner system in injection mold is very important because it influences the melt flow into the cavity. Some deflects, such as weld lines and overpacking, can be effectively controlled with proper selection of gate locations. In the present study, the design of gate locations in injection molding of a dashboard fur automobiles was carried out with CAMP mold, a PC-based simulation system for injection molding. A dummy runner system was developed to simulate a runner system in order to increase the efficiency of the analysis procedure. The numbers and locations of gates were iteratively determined in the present investigation. In this procedure, an acceptable design was obtained in terms of reducing the maximum pressure and clamping force.

A Study on Mechanical Properties Evaluation of Fiber-reinforced Plastic Cellular Injection-molded Specimens for the Development of High-strength Lightweight MHEV Battery Housing Molding Technology (고강성 경량 MHEV 배터리 하우징 성형기술개발을 위한 섬유강화 플라스틱 발포 사출 시험편의 기계적 물성평가에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.55-60
    • /
    • 2023
  • The fiber-reinforced plastics and cellular injection molding process can be used to efficiently reduce the weight of battery housing components of mild hybrid electronic vehicles(MHEV) made of metal. However, the fiber orientation of fiber-reinforced plastics and the growth of foaming cells are intertwined during the injection molding process, so it is difficult to predict the mechanical properties of products in the design process. Therefore, it is necessary to evaluate the mechanical properties of the materials prior to the efficient stiffness design of the target product. In this study, a study was conducted to evaluated the mechanical properties of fiber reinforced cellular injection-molded specimens. Two types of fiber-reinforced plastics that can be used in the target product were evaluated for changes in tensile properties of cellular injection-molded specimens depending on the foaming ratio and position from the injection gate. The PP and PA66 specimens showed a decrease of tensile modulus and strength of approximately 30% and 17% depending on the foaming ratio, respectively. Also, the tensile strength decreased approximately 26% and 17% depending on the position from the injection gate, respectively. As a result, it was confirmed that the PP specimens have a significantly mechanical property degradation compared to the PA66 specimens depending on the foaming ratio and position.

A Study on the Battery Case Injection Molding by CAE Analysis (CAE 해석을 이용한 배터리 케이스 사출성형에 관한 연구)

  • Lee, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • Battery cases have been made of polypropylene and its warpage is relatively large due to the crystalline characteristic of polypropylene. In this study, the battery case when the injection mold used to improve the Gate by simplifying the process of production cost savings and focus on improving the quality of molding CAE analysis was carried out. The result could be produced in plastic and products of the imbalance in the flow and deformation and to predict reliability of the product will contribute to reduced scrap.

Development of the inspection system for injection molding core and mobile camera module parts (카메라 모듈 부품 및 금형 코어 측정 시스템 개발)

  • Shin, Bong-Cheol;Kim, Gun-Hee;Kim, Jae-Cheol;Cho, Meyong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 2009
  • In this paper, for reducing the assembly torque of subminiature plastic barrel and base which are the essential parts of mobile phone camera module, the high-precision system for inspecting the screw shape of core, electrode and injection molding products was developed. For realization of inspection process, the inspection parameters for evaluating the manufacturing quality were selected and the measurement methods of selected parameters were developed. Finally, the inspection system which is possible to be applied to the field were fabricated.

A study of warpage caused by glass fiber orientation in Injection Molding to Upper Frame of Magnetic Contactor in 85 AF (Magnetic Contactor Upper Frame 사출성형시 유리섬유 배향에 따른 뒤틀림 변형에 관한 연구)

  • Park, Jin-Young;Cho, Hae-Yong;Kim, Kil-Su;Hwang, Han-Seong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.766-771
    • /
    • 2000
  • As using of insulating material of plastic to industrial electric field, thermoset has been gradually substituted for thermoplastic. But changing the material with crystalline has some problem, which is strength or warpage, Especially getting a strength to endure inner pressure is necessary when arc is occurred. So we use the material that is composed of glass fiber to compensate strength. By the way as the reinforced glass-fiber material is used in injection molding, unstableness of dimension is appeared frequently and it is difficult to know warpage pattern. So this paper will be contributed to know warpage pattern of mold product that is upper frame of magnetic contactor caused by glass-fiber orientation with fixed gate-system, when glass-fiber reinforced material with classification of poly-amide is used in injection molding.

  • PDF

Systems Engineering Approach to Develop Intelligent Production Planning Scheduling Model linked to Machine and Quality Data (설비 및 품질 데이터 연계 지능형 생산계획 스케줄링 모델 개발을 위한 시스템엔지니어링 접근 방법)

  • Park, Jong Hee;Kim, Jin Young;Hong, Dae Geun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2021
  • This study proposes a systems engineering approach for the development of an advanced planning & scheduling (APS) system for a cosmetic case manufacturing factory. The APS system makes production plans and schedules based on the injection process, which consists of 27 plastic injection machines in parallel to control recommended inventory of products. The system uses machine operation/failure information and defective product/work-in-process tracking information to support intelligent scheduling. Furthermore, a genetic algorithm model is applied to handle the complexity of heuristic rules and machine/quality constraints in this process. As a result of the development, the recommended inventory compliance rate is improved by scheduling the 30-day production plan for 15 main products.

Development of double injection mold for fuel-tube holder (자동차 연료튜브 홀더용 이중사출 금형·성형기술)

  • Kim, Gun-Hee;Yoon, Gil-Sang;Heo, Young-Moo;Jung, Woo-Chul;Shin, Kwang-Ho
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Double injection molding process is very efficient molding-method for molding the products which is consist of multi-materials. Fuel-tube holder which is necessary for automobil power train and circulation systems is composed of plastic and rubber materials to minimize the vibration and pulsation noises. In existing process, fuel-tube holder was made by the insert molding process or assembly process after molding. If fuel-tube holder is manufactured by double injection molding process, it may be realize to improve the product quality, efficiency of molding-process and retrenchment of manufacturing cost. In this study, for manufacturing fuel-tube holder by double injection molding process, the analysis of joining characteristics between PA6(polyamide 6) and TPE(thermoplastic elastomer) was executed and the double injectin mold for molding fuel-tube holder with core toggle mechanism was fabricated. Finally, fuel-tube holder was molding using fabricated double injection mold.

  • PDF

Measurement of Residual Stress Using Photoelasticity and Computer Simulation of Optical Characteristics in a Transparent Injection Molded Article (광탄성을 이용한 투명한 사출성형품의 잔류응력측정 및 광학적 특성의 컴퓨터 모사)

  • Hong, Jin-Soo;Park, Seo-Ri;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Pressurized high temperature plastic resin flows into the cavity of mold and is solidified in injection molding process. Residual stress is being developed in injection molded part because of high temperature variations and high pressure. Developed residual stress relaxes as time goes. Consequently this makes part deformed and deteriorates quality of product. A measurement method of residual stress for injection molded transparent articles has been investigated using photoelasticity. Light, a composite of electromagnetic waves, is purified into a single wave by a polarized film. When this wave passes through the specimen, birefringence is developed according to the level of residual stress in the specimen and color fringed pattern appears after the second polarized film. Residual stress in the injection molded transparent flat a part has been measured quantitatively using the color fringed pattern. Optical characteristics have been a part also predicted by computer simulation and compared with experimental results.