• 제목/요약/키워드: Plastic Frame

검색결과 441건 처리시간 0.03초

트리즈를 이용한 에어컨디셔너 프레임구조 설계 (Design of Air-Conditioner Frame Structure Using TRIZ Based Contradiction Analysis)

  • 최하영;정의문;이종수
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.961-967
    • /
    • 2012
  • The metal is frequently used in the air-conditioner frame, which must have the durability from the various external environments, but has difficulties in being manufactured for many complex shapes. On the other hand, the plastic, used as a material of injection molding, enables the realization of various shapes and the mass-production of complex ones and leads low production cost. As the air-conditioner frame becomes increasingly complex and detailed, the plastic material is highlighted as an alternative for the frame. But the product molded by plastic with a complex shape might have a noise problem. Therefore this study attempts to design the product through TRIZ in order to reduce the noise of the air-conditioner with the frame of plastic material.

Pseudo plastic zone analysis of steel frame structures comprising non-compact sections

  • Avery, P.;Mahendran, M.
    • Structural Engineering and Mechanics
    • /
    • 제10권4호
    • /
    • pp.371-392
    • /
    • 2000
  • Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. The pseudo plastic zone method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established by comparison with a comprehensive range of analytical benchmark frame solutions. The pseudo plastic zone method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.

Determination of earthquake safety of RC frame structures using an energy-based approach

  • Merter, Onur;Ucar, Taner;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.689-699
    • /
    • 2017
  • An energy-based approach for determining earthquake safety of reinforced concrete frame structures is presented. The developed approach is based on comparison of plastic energy capacities of the structures with plastic energy demands obtained for selected earthquake records. Plastic energy capacities of the selected reinforced concrete frames are determined graphically by analyzing plastic hinge regions with the developed equations. Seven earthquake records are chosen to perform the nonlinear time history analyses. Earthquake plastic energy demands are determined from nonlinear time history analyses and hysteretic behavior of earthquakes is converted to monotonic behavior by using nonlinear moment-rotation relations of plastic hinges and plastic axial deformations in columns. Earthquake safety of selected reinforced concrete frames is assessed by using plastic energy capacity graphs and earthquake plastic energy demands. The plastic energy dissipation capacities of the frame structures are examined whether these capacities can withstand the plastic energy demands for selected earthquakes or not. The displacements correspond to the mean plastic energy demands are obtained quite close to the displacements determined by using the procedures given in different seismic design codes.

Efficiency of CFT column plastic design approach for frame structures subjected to horizontal forces

  • SeongHun Kim;Hyo-Gyoung Kwak
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.527-541
    • /
    • 2023
  • This paper emphasizes the use of CFT columns in frame structures subjected to strong horizontal forces and shows that the efficiency of using CFT columns is increased when the plastic design approach is adopted. Because the plastic design approach is based on redistribution of the force of the internal member, a double node for the rotational degrees of freedom, where the adjacent two rotational degrees of freedom can be connected by a non-dimensional spring element, is designed and implemented into the formulation. In addition, an accompanying criterion is considered in order to make it possible to describe the continuous moment redistribution in members connected to a nodal point up to a complete plastic state. The efficiency of CFT columns is reviewed in comparison with RC columns in terms of the cost and the resistance capacity, as defined by a P-M interaction diagram. Three representative frame structures are considered and the obtained results show that the most efficient and economical design can be expected when the use of CFT columns is considered on the basis of the plastic design, especially when a frame structure is subjected to significant horizontal forces, as in a high-rise building.

소성 강도 해석에 의한 Web Frame의 시스템 신뢰성 해석 (The System Reliability Analysis of Web Frame by Plastic Strength Analysis)

  • 양영순;임상전
    • 대한조선학회논문집
    • /
    • 제28권2호
    • /
    • pp.251-267
    • /
    • 1991
  • 평면 골조 구조물로 이상화된 Web frame의 최종강도를 합리적으로 추정하기 위해 기존의 탄성해석 방법 대신에 구조물의 소성붕괴를 최종상태로 가정하여 구조해석을 수행하는 소성 해석 방법으로 선형 계획법과 Compact procedure를 정식화 하였고, 그 결과를 탄소성 해석과 비교하여 Web frame의 안전성 평가에 있어서 소성강도 해석 방법의 유용성을 검토하였다. 또한 구조해석에 사용되는 변수들의 확률적 특성을 고려하여 구조물의 안전성 평가를 하는 신뢰성 해석을 위해 소성붕괴 해석에서 얻어지는 구조물이 소성 파괴모드를 신뢰성 모델로서 사용 하였으나, 선체와 같이 과잉 구속되어 있는 부정정 구조물이 갖는 다수의 파괴모드 문제를 처리 하기 위해 기본 파괴모드 해석 방법과 자동 파괴모드 해석 방법을 이용하였고, 얻어진 파괴 모드로 부터 Web frame의 파괴확률을 계산하여 구조물의 안전성 평가에 있어서 확정론적인(deterministic)방법과 확률론적인(probabilistic)방법을 비교 검토하였다.

  • PDF

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

실내건축 공간 디자인을 위한 '빛' 관련 디자인개념 추출 - 빛에 의한 시지각적 현상(現象)으로서의 공간 조형성을 중심으로 - (Extraction of Design Concepts of Light for the Architectural Interior Space - Focused on the plastic character of space as visual phenomenon by Light -)

  • 유영희
    • 한국실내디자인학회논문집
    • /
    • 제16권2호
    • /
    • pp.115-122
    • /
    • 2007
  • The purpose of this study is to extract design concepts, especially in relation to light, as a part of extracting design concepts in architectural interior design. This study consists of two steps. Firstly, appropriate design concepts are extracted from various design characteristics. Secondly, these concepts are classified in the frame of other components of architectural space, as well as in the frame of the plastic characteristics of light. Various design characteristics were analyzed, those of which relating to the plastic character of space, namely, visual phenomenon. As a result of the analysis, 32 concepts were extracted. These concepts, in the frame of other components of architectural space (space, form, structure, opening of space, material, color, inside & outside relationship), were classified, as well as In the frame of the plastic character of Light (transparency, perception, direction, ornament). As the results of this research, the suggested design concepts will be a study material, available to the interior designers as well as students who want to utilize the organized study concepts.

다관절 복합이동 해저로봇을 위한 탄소섬유 복합소재 프레임의 구조 해석 (Finite Element Analysis of Carbon Fiber Reinforced Plastic Frame for Multi-legged Subsea Robot)

  • 유승열;전봉환;심형원;이판묵
    • 한국해양공학회지
    • /
    • 제27권6호
    • /
    • pp.65-72
    • /
    • 2013
  • This paper describes a finite element analysis (FEA) of the body frame of a subsea robot, Crabster200 (CR200). CR200 has six legs for mobility instead of screw type propellers, which distinguishes it from previous underwater robots such as remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). Another distinguishing characteristic is the body frame, which is made of carbon fiber reinforced plastic (CFRP). This body frame is designed as a rib cage structure in order to disperse the applied external loads and reduce the weight. The frame should be strong enough to support many devices for exploration and operation underwater. For a reasonable FEA, we carried out specimen tests. Using the obtained material properties, we performed a modal analysis and FEA for CR200 with a ready posture. Finally, this paper presents the FEA results for the CFRP body frame and the compares the characteristics of CFRP with conventional material, aluminum.

Dissipation of energy in steel frames with PR connections

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Structural Engineering and Mechanics
    • /
    • 제9권3호
    • /
    • pp.241-256
    • /
    • 2000
  • The major sources of energy dissipation in steel frames with partially restrained (PR) connections are evaluated. Available experimental results are used to verify the mathematical model used in this study. The verified model is then used to quantify the energy dissipation in PR connections due to hysteretic behavior, due to viscous damping and at plastic hinges if they are formed. Observations are made for two load conditions: a sinusoidal load applied at the top of the frame, and a sinusoidal ground acceleration applied at the base of the frame representing a seismic loading condition. This analytical study confirms the general behavior, observed during experimental investigations, that PR connections reduce the overall stiffness of frames, but add a major source of energy dissipation. As the connections become stiffer, the contribution of PR connections in dissipating energy becomes less significant. A connection with a T ratio (representing its stiffness) of at least 0.9 should not be considered as fully restrained as is commonly assumed, since the energy dissipation characteristics are different. The flexibility of PR connections alters the fundamental frequency of the frame. Depending on the situation, it may bring the frame closer to or further from the resonance condition. If the frame approaches the resonance condition, the effect of damping is expected to be very important. However, if the frame moves away from the resonance condition, the energy dissipation at the PR connections is expected to be significant with an increase in the deformation of the frame, particularly for low damping values. For low damping values, the dissipation of energy at plastic hinges is comparable to that due to viscous damping, and increases as the frame approaches failure. For the range of parameters considered in this study, the energy dissipations at the PR connections and at the plastic hinges are of the same order of magnitude. The study quantitatively confirms the general observations made in experimental investigations for steel frames with PR connections; however, proper consideration of the stiffness of PR connections and other dynamic properties is essential in predicting the dynamic behavior.

Timoshenko보 요소를 이용한 평면 뼈대구조의 탄-소성 해석 (Elasto-Plastic Analysis of Plane Frame Structures using Timoshenko Beam Element)

  • 정동영;이정석;신영식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 2001
  • This paper presents a non-linear analysis procedure for plane frame structures by finite element formulation with assumptions of Timoshenko beam theory. Finite element displacement method based on Lagrangian formulation is used and two-noded and isoparametric line element is adopted to represent finite element model. The layered approach is used for the elasto-plastic analysis of the plane frame structures with rectangular and I cross sections. A load incremental method combined with the tangent stiffness and the initial stiffness methods for each load increment is used for the solution of non-linear equations. Numerical examples are presented to investigate the behavior and the accuracy of the elasto-plastic non-linear application and the results of this study are compared with other solutions using the concept of plastic hinge.

  • PDF