• Title/Summary/Keyword: Plastic Film

Search Result 910, Processing Time 0.027 seconds

Study about high temperature operating test result For Thin Film-Transistor Electro Phoretic Display on plastic

  • Kim, Sun-Young;Lee, Woo-Jae;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.962-964
    • /
    • 2007
  • A 14.1-inch reflective type Thin Film Transistor-Electric Phoretic Display was developed at the esolution of 1280 x 900 lines on plastic substrate. All of the processes of TFT were carried out below $100\;^{\circ}C$ on PES plastic films. The process conditions of TFT were optimized for large area TFT-LCD on plastic substrate. At $60^{\circ}C$ high temperature during 160hours, TFT does not delaminate and IV characteristic is also satisfied.

  • PDF

Effects of the Addition Pro-oxidant on the Physical Properties and Degradation of the Petroleum- derived Plastic Film (산화촉진제 첨가가 플라스틱 필름의 물성과 분해에 미치는 영향)

  • Kihyeon, Ahn;Jae-Suk, Choi;Roun, Lee;Jung-Gu, Han;Tae-Hoon, Ro;Hyung Woo, Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.165-170
    • /
    • 2022
  • If petroleum- derived plastic like a bio-based plastic was degradation, awareness like a global warming and environmental disasters will be decreased. Plastic film was produced by adding ferric ions according to concentration by using a pro-oxidant in polyolefin resin. Changes in tensile strength, elongation, and molecular weight were evaluated according to the UV irradiation time. Increasing the amount of ferric ions resulted in more significant declines of physical properties, and also resulted in greater changes in molecular weight. After 100 hours of UV irradiation, tensile strength declined significantly in the film containing pro-oxidant as compared to the control. A similar effect was also observed in terms of elongation. The film containing pro-oxidant showed a 73.8% decrease in molecular weight after 100 hours of UV irradiation. The appropriate use of pro-oxidant can not only degrade plastic film but also control the time of degradation at the petroleum-derived plastic films. Further studies are necessary to investigate the conditions of plastic film degradation.

Migration Behavior of Fatty Materials into the Selected Plastic Film During Storage (저장 조건에서의 플라스틱 포장재와 지방산의 전이도 측정)

  • An, Duek-Jun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.8 no.2
    • /
    • pp.39-43
    • /
    • 2002
  • Increasing use of plastics in food packaging materials has led to the issue of food-plastic packaging materials's mutual interactions. Although the plastic packaging materials are generally considered as inert, migration and sorption of fatty materials are some of the problems associated with their use. So, this work investigated the compatibility of three structurally different polymers, polypropylene (PP), polyethyleneterephthalate (PET) and ethylene vinyl alcohol copolymer (EVOH) with some structurally different food fats. The main goal was to study the sorption of food fats by the plastic films and to see what extent mechanical properties of the plastic films was affected by plasticization effect due to sorption of fatty materials. PP, PET, and EVOH films was immersed in pure triglycerides, and then extracted with hexane and analyzed for the amounts of fat migrated. The sorbed films were also investigated for change in mechanical properties. Result showed that structural factor of the films and fatty materials plays important role in th migration process. The fat with the simplest structure are migrated more easily that the fat with more complex structure. However, structural effect of migration was varied according to degree of crystallinity and density of plastic films. In addition to that, polarity of plastic film was affected migration of fatty materials significantly. Additional research is needed to justify the reason why migration of fatty materials into the films was affected by polarity and structural integrity.

  • PDF

Out Gassing from Plastic Substrates Affect on the Electrical Properties of TCO Films (플라스틱 기판의 Outgassing이 TCO 박막의 전기적 특성에 미치는 영향)

  • Kim, Hwa-Min;Ji, Seung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.961-968
    • /
    • 2009
  • In this work, transparent conductive oxide(TCO) films such as $In_2O_3-SnO_2$(ITO) and $In_2O_3-ZnO$(IZO) were prepared on polyethylene naphthalene(PEN) and glass substrates by using rf-magnetron sputtering system. The TCO films deposited on PEN substrate show very poor conductivity as compared to that of the TCO films deposited on glass substrates. From the results of the residual gas analysis(RGA) test, this poor stability of plastic substrate is presumed to be caused by the deteriorated adhesion between the TCO films and the plastic substrate due to outgassing from the plastic substrate during deposition of TCO films. From our experiment, it is found that the vaporization of some defects in the plastic substrates deteriorate the adhesion of the TCO films to the plastic substrate, because the most plastic substrates containing the water vapor and/or other adsorbed particles such as organic solvents. Mixing of these gases vaporized in the sputtering process will also affect the electrical property of the deposited TCO films. Inorganic thin composite $(SiO_2)_{40}(ZnO)_{60}$ film as a gas barrier layer is coated on the PEN substrate to protecting the diffusion of vapors from the substrate, so that the TCO films with an improved quality can be obtained.

Effect of Light Receiving rate on Growth and Quality of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.62-62
    • /
    • 2020
  • Ginseng is a shade-plant cultivated using shading facilities. However, at too low light levels, root growth is poor, and at high light levels, the destruction of chlorophyll reduces the photosynthesis efficiency due to leaf burn and early fall leaves. The ginseng has a lightsaturation point of 12,000~15,000 lux when grown at 15 to 20℃ and 9,500 lux at 25℃. This study was conducted to select the optimal light intensity of 3-year-old ginseng grown in blue-white film plastic house. The seeds were planted in the blue-white film plastic house with different light receiving rate (March 17, 2020). Between April and September, the average air temperature in the house was 20.4-20.7℃. Average soil temperature was 18.3℃-18.5℃. The chemical properties of the test soil was as follows. The pH level was 7.0-7.4, EC was 0.5-0.6 dS/m, OM was at the levels of 33.6-37.7 g/kg, P2O5 was 513.0-590.8 mg/kg, slightly higher than the allowable 400 mg/kg. The amount of light intensity, illuminance, and solar radiation in the blue-white film house was increased as the light-receiving rate increased and the amount of light intensity was found to be 9-14% compared to the open field, 8-13% illuminance and 9-14% solar irradiation respectively. The photosynthesis rate was the lowest at 3.1 µmolCO2/m2/s in the 9% light blue-white plastic house and 4.2 and 4.0 µmolCO2/m2/s in the 12% and 14% light blue-white plastic house, respectively. These results generally indicate that the photosynthesis of plants increases with the amount of light, but the ginseng has a lower light saturation point at high temperatures, and the higher the amount of light, the lower the photosynthetic efficiency. The SPAD (chlorophyll content) value decreased as the increase of light-receiving rate, and was the highest at 32.7 in 9% light blue-white plastic house. Ginseng germination started on April 11 and took 13-15 days to germinate. The overall germination rate was 82.9-85.8%. The plant height and length of stem were long in the 9% light-receiving plastic house. The diameter of stem was thick in the 12-14% light-receiving plastic house. In the 12% and 14% light-receiving plastic house, the length and diameter of taproot was long and thick, so the fresh weight of root per plant was 20 g or more, which was heavier than 16.9 g of the 9% light-receiving plastic house. The disease incidence (Alternaria blight, Gray mold and Damping-off etc.) rate were 0.9-2.7%. The incidence of Sclerotinia rot disease was 7.5-8.4%, and root rot was 0-20.0%. The incidence ratio of rusty root ginseng was 34.4-38.7% level, which was an increase from the previous year's 15% level.

  • PDF

Pressure Control Organic Vapor Deposition Methods for Fabricating Organic Thin-Film Transistors

  • Ahn, SeongDeok;Kang, Seong Youl;Oh, Ji Young;Suh, Kyung Soo;Cho, Kyoung Ik;Koo, Jae Bon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.970-973
    • /
    • 2012
  • In this letter, we report on the development progress of a pressure control organic vapor deposition (PCOVD) technology used to design and build a large area deposition system. We also investigate the growth characteristics of a pentacene thin film by PCOVD. Using the PCOVD method, the mobility and on/off current ratio of an organic thin-film transistor (OTFT) on a plastic substrate are $0.1cm^2/Vs$ and $10^6$, respectively. The developed OTFT can be applied to a flexible display on a plastic substrate.

Groundwater and Soil Environment of Plastic Film House Fields around Middle Korea (우리나라 중부지방 시설원예지 토양 및 지하수 환경)

  • Kim, Jin-Ho;Ryu, Jong-Soo;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.479-483
    • /
    • 2001
  • This Study was carried out to know the soil properties and the quality of shallow groundwater in the plastic film house fields around mid-Korea. This study was conducted at 11 sites in Suweon, Pyungtaek, Yongin, and Chunchen on May, June, July and August in 1999. The the average concentration of nitrate-nitrogen was 19.1 mg/L, it reached almost to the limiting level, 20 mg/L. Moreover about 36.4% of survey sites exceeded limiting level to agricultural groundwater quality. And Sulfur concentrations also at some sites exceeded to agricultural groundwater quality limit level (50 mg/L), which could make damage to the crop. Nitrate-nitrogen, which is one of the most important factors in the groundwater quality, It has highly positive correlation with any other ion in groundwater. This result showed that groundwater quality management practices should be taken for the agricultural production as well as for environment at the plastic film house areas.

  • PDF

Assessment of the Impacts of the Impervious Surface Change in the Farm Region on Watershed Hydrology (농경지 불투수면 변화에 따른 유역 수문 영향 분석)

  • Kim, Hak-Kwan;Lee, Eun-Jeong;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.17-23
    • /
    • 2009
  • The Soil and Water Assessment Tool (SWAT) model was used in this study to evaluate the hydrologic impacts by the impervious surface change in the farm region. The model was calibrated and validated by using four years (1999-2002) of measured data for the Gyeongancheon watershed in Korea. The simulation results agreed well with observed values during the calibration and validation periods. Land use scenarios including various changes of the plastic film house area in the farm region were applied to assess their effects on watershed hydrology. The results indicated that the surface direct (5.6%~14.0%) and total runoff (0.8%~1.5%) increased, but the groundwater discharge (10.7%~27.7%) and evapotranspiration (1.5%~3.3%) decreased as the plastic film house area (5.7%~12.4%) increased.

Fabrication of Organic Thin-Film Transistors with Polymer Gate Insulators on Plastic Substrate

  • Ahn, Seong-Deok;Kang, Seung-Youl;Oh, Ji-Young;You, In-Kyu;Kim, Gi-Heon;Baek, Kyu-Ha;Kim, Chul-Am;Suh, Kyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1170-1173
    • /
    • 2006
  • Active layer patterned OTFT was obtained on a plastic substrate using the optimal growth condition of pentancene thin films as active layer and parylene thin films as passivation layer. Tranditional photolithography was performed to use a dry etch to pattern the material stack. The pentacene thin film and parylene thin film were deposited onto a plastic substrate using PC-OVD and CVD, respectively.

  • PDF

Analysis of Nocturnal Thermal Insulation Effect of Thermal Curtain in Plastic Greenhouse (야간(夜間)의 온실내(溫室內) 보온(保溫)커텐의 보온효과분석(保溫效果分析))

  • Cho, Yong-Baeg;Koh, Hak-Kyun;Kim, Moon-Ki;Kim, Yong-Hyeon
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.22-29
    • /
    • 1989
  • A simulation model of plastic greenhouse was developed to evaluate the insulation effect of thermal curtain. Change in thermal environment with and without thermal curtain was verified through experiments, which agreed with the predicted values satisfactorily. About 18 to 20% of energy was saved in the plastic greenhouse by employing the P.E. film thermal curtain. Employing P.E. film thermal curtain also raised the temperature of the covering film and inner air by $1^{\circ}C$ and $1.5{\sim}1.8^{\circ}C$, respectively.

  • PDF