• Title/Summary/Keyword: Plastic Displacement Rate

Search Result 52, Processing Time 0.018 seconds

Plastic Displacement Estimates in Creep Crack Growth Testing (크리프 균열 성장 실험을 위한 소성 변위 결정법)

  • Huh Nam-Su;Yoon Kee-Bong;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1219-1226
    • /
    • 2006
  • The ASTM test standard recommends the use of the compact tension specimen for creep crack growth rates measurement. In the creep crack growth rate test, the displacement rate due to creep is obtained by subtracting the contribution of elastic and plastic components from the total load line displacement rate based on displacement partitioning method fur determining $C^*-integral$, which involves Ramberg-Osgood (R-O) fitting procedures. This paper investigates the effect of the R-O fitting procedures on plastic displacement rate estimates in creep crack growth testing, via detailed two-dimensional and three-dimensional finite element analyses of the standard compact tension specimen. Four different R-O fitting procedures are considered; (i) fitting the entire true stress-strain data up to the ultimate tensile strength, (ii) fitting the true stress-strain data from 0.1% strain to 0.8 of the true ultimate strain, (iii) fitting the true stress-strain data only up to 5% strain, and (iv) fitting the engineering stress-strain data. It is found that the last two procedures provide reasonably accurate plastic displacement rates and thus should be recommended in creep crack growth testing. Moreover, several advantages of fitting the engineering stress-strain data over fitting the true stress-strain data only up to 5% strain are discussed.

An Investigation about Dynamic Behavior of Three Point Bending Specimen

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.149-157
    • /
    • 2000
  • Computer simulations of the mechanical behavior of a three point bend specimen with a quarter notch under impact load are performed. The case with a load application point at the side is considered. An elastic-plastic von Mises material model is chosen. Three phases such as impact bouncing and bending phases are found to be identified during the period from the moment of impact to the estimated time for crack initiation. It is clearly shown that no plastic deformation near the crack tip is appeared at the impact phase. However it is confirmed that the plastic zone near the crack tip emerges in the second phase and the plastic hinge has been formed in the third phase. Gap opening displacement crack tip opening displacement and strain rate are compared with rate dependent material(visco-plastic material). The stability during various dynamic load can be seen by using the simulation of this study.

  • PDF

Dynamic Analysis of 3 Point Bend Specimens under High Loading Rates

  • Han, Moon-Sik;Cho, Jae-Ung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.84-93
    • /
    • 2000
  • Computer simulations of the mechanical behavior of 3 point bend specimens with a quarter notch under impact load are performed. This validity is found to be identified by the experimental proof. The cases with various loading rates applied at the side of the specimen are considered. An elastoplastic von Mises material model is chosen. Gap opening displacement, reaction force, crack tip opening displacement and strain rate are also compared with rate dependent material(visco-plastic material). The stability during various dynamic load can be seen by using the simulation of this study. These differences of the cases with various loading rates are also investigated.

  • PDF

A Study on the Interlaminar Fracture Toughness of Glass Fiber Reinforced Plastic Comosites (GFRP 복합재료의 층간파괴인성치에 관한 연구)

  • 박기호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.410-420
    • /
    • 1999
  • The value of the mode I interlamina fracture toughness, GIC, is calculated by experimental compliance method, modified compliance method and beam theory. The value of the mode II interlamina fracture toughness, GIC, is evaluated by beam method, theory beam theory and compliance method. This paper describes the effect of load pint displacement rate and speicimen geometries for mode I and II interlaminar fracture toughness of glass fiber reinforced plastic composites by using double cantilever beam (DCB) and end notched flexure (ENF) specimen. For the load point displacement rate of increases whereas the value of 2,6 and 10 mm/min the value of GIC decrease as load point displacement rate increases whereas the value of GIC is found to be no significant effect. The value of GIC decreases as initial crack length increases. The fractured surface of the DCB and ENF samples are examined by scanning electron microscopy (SEM).

  • PDF

Analysis of the Strain Rate Effect in Electro-Magnetic Forming (전자기 성형에서의 변형률 속도 효과 해석)

  • 곽신웅;신효철;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1043-1058
    • /
    • 1990
  • The Strain rate effect in electro-magnetic forming, which is one of the high velocity forming methods, is studied by the finite element method in this paper. The forming process is simplified by neglecting the coupling between magnetic field and work-piece deformation, and the impulsive magnetic pressure is regarded as inner pressure load. A rate-dependent elasto-plastic material model, of which tangential modulus depends of effective strain rate, is proposed. The model is shown to well describe the transient increase of yield stresses, the decreases of the final displacement and yield stress, the decrease of the difference in the distribution of deformation along the axial direction, and the change of deformation mechanism due to strain rate effect. As a result, displacement, final deformed shape, radial velocity, deformation energy, and the changes of effective stress, effective strain and effective strain rate through plastic working are given. Based on the results, the effectiveness of this model and the strain rate effect of the deformation process of the work-piece are discussed.

A Study on the Wear of Rail by Fracture Mechanics (파괴역학을 이용한 차륜과 레일의 마모에 관한 연구)

  • 구병춘
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.315-322
    • /
    • 1998
  • A two dimensional elasto-plastic finite element program taking into account contact between crack surfaces if developed in order to analyze subsurface cracking in rolling contact. But the friction between upper and lower surface of the crack is not considered. Under the assumptions of small deformation and small displacement, the incremental theory of plasticity is used to describe plastic deformation. J-integral is computed as the applied Hertzian load slides over the surface with friction. J-integral is correlated with wear rate of the rail. The propagation rate of the right tip of the surface crack is fast by 45% than that of the left side.

  • PDF

A Study on the Elastic-Plastic Contact Problem for Large Deformation (대변형 탄소성 접촉문제에 관한 연구)

  • Jeon, Byung-Hee;Kim, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1658-1667
    • /
    • 1993
  • In this research, a numerical algorithm has been developed, which can be applied to the large deformation and large displacement contact problems between two deformable bodies. The contact conditions expressed in terms of the rate of angle change have been proposed considering the change in geometric shape and rate of contact force. A set of linear simultaneous equations is constructed by adding the geometric shape change and contact conditions to the original stiffness matrix. A new method to determine time increment has been proposed based on Euler method, in which the condition to prevent the contact bodies from penetrating and overrunning each other has been taken into consideration. Practical application to contact problem is extrusion in which bodies are sliding along the contact boundary.

Flow Visualization of Plastic type PCV Valve with Horizontal Force (수평력을 받는 Plastic type PCV 밸브 내부 유동 가시화)

  • Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • PCV(Positive Crankcase Ventilation) system is designed to remove blowby gas. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates various operating conditions of an automotive engine. As this valve plays a crucial role, the demand in its design is high owing to the small size and high velocity. For this reason, a numerical investigation was carried out to understand both the spool dynamic motion and internal fluid flow characteristics. As a result, the spool dynamic characteristics(i.e. displacement, velocity, acting force), increase in direct proportion to the magnitude of the pressure difference and indicate periodic oscillating motions. Moreover, the velocity at the orifice region decreases according to the increase in differential pressure due to energy loss caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in front of the spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement.

A Closed-Form Solution for Circular Openings in an Elastic-Brittle-Plastic Extended Spatial Mobilized Plane Medium

  • Wu, Chuangzhou;Guo, Wei;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Based on the extended spatial mobilization plane (SMP) criterion, we present an elastic-brittle-plastic solution for an axisymmetric cylindrical tunnel. The influences of the intermediate principal compressive stress and material strain-softening behavior are considered. Closed-form formulas for the critical support force, radius of plastic zone, and distributions of stress and displacement in surrounding rock are proposed. The elastic-plastic solution based on SMP is compared with the Kastner solution to verify the credibility of the obtained elastic-plastic solution. The elastic-brittle-plastic solution following the SMP criterion and the current solution based on the Mohr-Coulomb criterion are also compared. The rock strain-softening rate and the intermediate principal stress affect the stability of the surrounding rock. The results provide guidance for optimizing the design of support systems for tunnels.

Partial Breast Reconstruction Using Various Oncoplastic Techniques for Centrally Located Breast Cancer

  • Park, Hyo Chun;Kim, Hong Yeul;Kim, Min Chul;Lee, Jeong Woo;Chung, Ho Yun;Cho, Byung Chae;Park, Ho Yong;Yang, Jung Dug
    • Archives of Plastic Surgery
    • /
    • v.41 no.5
    • /
    • pp.520-528
    • /
    • 2014
  • Background As the breast cancer incidence has increased, breast-conserving surgery has replaced total mastectomy as the predominant procedure. However, centrally located breast cancers pose significant challenges to successful breast-conserving surgeries. Therefore, we performed partial mastectomy and oncoplastic procedures on centrally located breast cancer as a means of partial breast reconstruction. The authors examined and evaluated the functional and aesthetic usefulness of this reconstruction method. Methods From January 2007 to June 2011, 35 patients with centrally located breast cancers who underwent various oncoplastic procedures based on the breast size and resection volume. The oncoplastic procedures performed included volume displacement surgical techniques such as purse-string suture, linear suture, and reduction mammaplasty. Other oncoplastic procedures included volume replacement procedures with an adipofascial, thoracoepigastric, intercostal artery perforator, thoracodorsal artery perforator, or latissimus dorsi flap. Results Mean patient age was 49 years, and mean follow-up period was 11 months. In cases of small to moderate-sized breasts and resection volumes <50 g, volume displacement procedures were performed. In cases of resection volumes >50 g, volume replacement procedures were performed. In cases of larger breasts and smaller resection volumes, glandular reshaping was performed. Finally, in cases of larger breasts and larger resection volumes, reduction mammaplasty was performed. This reconstruction method also elicits a high patient satisfaction rate with no significant complications. Conclusions In centrally located breast cancer, oncoplastic surgery considering breast size and resection volume is safe and provides appropriate aesthetic outcomes. Therefore, our method is advisable for breast cancer patients who elect to conserve their breasts and retain a natural breast shape.