• Title/Summary/Keyword: Plastic Displacement

Search Result 788, Processing Time 0.028 seconds

Exact thermoelastoplastic analysis of FGM rotating hollow disks in a linear elastic-fully plastic condition

  • Nadia Alavi;Mohammad Zamani Nejad;Amin Hadi;Anahita Nikeghbalyan
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.377-389
    • /
    • 2024
  • In the present study, thermoelsatoplastic stresses and displacement for rotating hollow disks made of functionally graded materials (FGMs) has been investigated. The linear elastic-fully plastic condition is considered. The material properties except Poisson's ratio are assumed to vary in the radial direction as a power-law function. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the disk. The plastic model is based on the Tresca yield criterion and its associated flow rules under the assumption of perfectly plastic material behavior. Exact solutions of field equations for elastic and plastic deformations are obtained. It is shown that the elastoplastic response of the functionally graded (FG) disk is affected notably by the radial variation of material properties. It is also shown that, depending on material properties and disk dimensions, different modes of plastic deformation may occur.

A displacement solution for circular openings in an elastic-brittle-plastic rock

  • Huang, Houxu;Li, Jie;Rong, Xiaoli;Hao, Yiqing;Dong, Xin
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.489-504
    • /
    • 2017
  • The localized shear and the slip lines are easily observed in elastic-brittle-plastic rock. After yielding, the strength of the brittle rock suddenly drops from the peak value to the residual value, and there are slip lines which divide the macro rock into numbers of elements. There are slippages of elements along the slip lines and the displacement field in the plastic region is discontinuous. With some restraints, the discontinuities can be described by the combination of two smooth functions, one is for the meaning of averaging the original function, and the other is for characterizing the breaks of the original function. The slip lines around the circular opening in the plastic region of an isotropic H-B rock which subjected to a hydrostatic in situ stress can be described by the logarithmic spirals. After failure, the deformation mechanism of the plastic region is mainly attributed to the slippage, and a slippage parameter is introduced. A new analytical solution is presented for the plane strain analysis of displacements around circular openings. The displacements obtained by using the new solution are found to be well coincide with the exact solutions from the published sources.

A matrix displacement formulation for minimum weight design of frames

  • Orakdogen, Engin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.473-489
    • /
    • 2002
  • A static linear programming formulation for minimum weight design of frames that is based on a matrix displacement method is presented in this paper. According to elementary theory of plasticity, minimum weight design of frames can be carried out by using only the equilibrium equations, because the system is statically determinate when at an incipient collapse state. In the present formulation, a statically determinate released frame is defined by introducing hinges into the real frame and the bending moments in yield constraints are expressed in terms of unit hinge rotations and the external loads respectively, by utilizing the matrix displacement method. Conventional Simplex algorithm with some modifications is utilized for the solution of linear programming problem. As the formulation is based on matrix displacement method, it may be easily adopted to the weight optimization of frames with displacement and deformation limitations. Four illustrative examples are also given for comparing the results to those obtained in previous studies.

The Evaluation of LBB Behavior and Crack Opening Displacement on Piping System under Bending Load (굽힘하중을 받는 배관계의 LBB거동 및 균열개구변위의 평가)

  • Nam, Ki-Woo;Ahn, Seok-Hwan;Ando, Kotoji
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.67-72
    • /
    • 2001
  • The LBB behavior and the crack opening displacement after a crack penetrated wall thickness of statically indeterminate piping system were investigated in this study, compared with statically determinate piping system. The reduction of ultimate strength caused by a crack was relatively small in the statically indeterminate piping system. The statically indeterminate piping system has more safety margin for LBB behavior than the statically determinate piping system. The crack opening displacement could be evaluated by using the plastic rotation angle proposed to evaluate the crack opening displacement after crack penetration in pipe with a non-penetrating crack.

  • PDF

Change of Glycosaminoglycan Distribution and Collagen Fibers Arrangement on Temporomandibular Joint Following Anterior Disc Displacement of the Rabbits

  • Kim, Uk-Kyu;Chung, In-Kyo;Kim, Kyu-Cheon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.3
    • /
    • pp.173-179
    • /
    • 2012
  • Purpose: This study was to determine the effects of surgical induction of anterior disc displacement (ADD) on the distribution of glycosaminoglycan (GAG) and collagen fiber arrangement in the rabbit temporomandibular joint (TMJ) tissues including articular cartilage of condyle, disc, retrodiscal tissue, and articular eminence. Methods: We used van Gieson staining and Alcian blue critical electrolyte concentration (CEC) method to observe change of collagen fibers on disc and to measure GAG up to 10 weeks in TMJ tissues after surgical induction of ADD on 25 rabbits. Results: CEC measurements for GAG showed 0.3 M, 0.4 M, 0.6 M, and 0.8 M at 1 week, 2 weeks, 3, 4, and 8 weeks, 10 weeks, respectively. This result indicated that GAGs shifted to highly sulphated ones as time passed. Disruption of collagen fiber arrangement in the disk occurred at 10 days and aggravated at 3 weeks. Conclusion: Our study showed degenerative osteoarthritis changes in rabbit TMJ following surgical induction of ADD up to 10-week period.

FEA model analysis of the effects of the stress distribution of saddle-type implants on the alveolar bone and the structural/physical stability of implants

  • Kong, Yoon Soo;Park, Jun Woo;Choi, Dong Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.9.1-9.9
    • /
    • 2016
  • Background: As dental implants receive masticatory stress, the distribution of stress is very important to peri-implant bone homeostasis and implant survival. In this report, we created a saddle-type implant and analyzed its stability and ability to distribute stress to the surrounding bone. Methods: The implants were designed as a saddle-type implant (SI) that wrapped around the alveolar bone, and the sizes of the saddles were 2.5, 3.5, 4.5, and 5.5 mm. The X and Y displacement were compared to clarify the effects of the saddle structures. The control group consisted of dental implants without the saddle design (CI). Using finite element modeling (FEM), the stress distribution around the dental implants was analyzed. Results: With saddle-type implants, saddles longer than 4.5 mm were more effective for stress distribution than CI. Regarding lateral displacement, a SI of 2.5 mm was effective for stress distribution compared to lateral displacement. ASI that was 5.6 mm in length was more effective for stress distribution than a CI that was 10 mm in length. Conclusions: The saddle-type implant could have a bone-gaining effect. Because it has stress-distributing effects, it might protect the newly formed bone under the implant.

The Behavior of Earth Retaining Structures Using p-y Curve with Coupling (p-y 특성곡선의 Coupling을 고려한 토류벽의 거동해석)

  • Kim, Soo Il;Jeong, Sang Seom;Chang, Buhm Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.553-563
    • /
    • 1994
  • The behavior of earth retaining structure was investigated by considering coupling between soil springs in elasto-plastic soil. For the computation of soil reaction, soil on both sides of walls was simplified as e1asto-plastic springs, and the required horizontal displacement to mobilize Terzaghi's active and passive state was applied to construct the p-y curve. Reliability on computer program developed is verified through the comparison between prediction and in-situ measurements. Based on the results obtained, it is found that the prediction by using coupling between soil springs simulates well the general trend observed by the in-situ measurements. It is also found that the horizontal displacement required for the active state gives a very small effect to the displacement of walls in the sandy soil.

  • PDF

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

Dynamic identification of soil-structure system designed by direct displacement-based method for different site conditions

  • Mahmoudabadi, Vahidreza;Bahar, Omid;Jafari, Mohammad Kazem;Safiey, Amir
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.445-458
    • /
    • 2019
  • This study mainly aims to assess the performance of soil-structure systems designed by direct displacement-based method coupled with strong column-weak beam design concept through various system identification techniques under strong ground motions. To this end, various system identification methods are employed to evaluate the dynamic characteristics of a structure (i.e., modal frequency, system damping, mode shapes, and plastic hinge formation pattern) under a strong seismic excitation considering soil-structure interaction for different site conditions as specified by ASCE 7-10. The scope of the study narrowed down to the code-complying low- to high-rise steel moment resisting frames with various heights (4, 8, 12, 16-story). The comparison of the result of soil-structure systems with fix-based support condition indicates that the modal frequencies of these systems are highly influenced by the structure heights, specifically for the softer soils. This trend is more significant for higher modes of the system which can considerably dominate the response of structures in which the higher modes have more contribution in dynamic response. Amongst all studied modes of the vibration, the damping ratio estimated for the first mode is relatively the closet to the initial assumed damping ratios. Moreover, it was found that fewer plastic hinges are developed in the structure of soil-structure systems with a softer soil which contradicts the general expectation of higher damageability of such structural systems.

Cyclic testing of a new visco-plastic damper subjected to harmonic and quasi-static loading

  • Modhej, Ahmad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.317-333
    • /
    • 2022
  • Visco-Plastic Damper (VPD) as a passive energy dissipation device with dual behavior has been recently numerically studied. It consists of two bent steel plates and segments with a viscoelastic solid material in between, combining and improving characteristics of both displacement-dependent and velocity-dependent devices. In order to trust the performance of VPD, for the 1st time this paper experimentally investigates prototype damper behavior under a wide range of frequency and amplitude of dynamic loading. A high-axial damping rubber is innovatively proposed as the viscoelastic layer designed to withstand large axial strains and dissipate energy accordingly. Test results confirmed all assumptions about VPD. The behavior of VPD subjected to low levels of excitation is elastic while with increasing levels of excitation, a significant source of energy dissipation is provided through the yielding of the steel elements in addition to the viscoelastic energy dissipation. The results showed energy dissipation of 99.35 kN.m under a dynamic displacement with 14.095 mm amplitude and 0.333 Hz frequency. Lateral displacement at the middle of the device was created with an amplification factor obtained ranging from 2.108 to 3.242 in the rubber block. Therefore, the energy dissipation of viscoelastic material of VPD was calculated 18.6 times that of the ordinary viscoelastic damper.