• Title/Summary/Keyword: Plastic Collapse

Search Result 293, Processing Time 0.022 seconds

Analysis of Failure Behavior for Thin Cylinder Pressure Vessel with Corrosion (부식된 얇은 원통 압력용기의 파손 거동 해석)

  • Yoon, Ja-Moon;Choi, Moon-Oh;Ahn, Seok-Hwan;Nam, Ki-Woo;Ando, Katoji
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.230-232
    • /
    • 2006
  • Failure behaviors of thin cylinder with corrosion are very important for the integrity of boiler and pressure vessel system. In this study, FEM with internal pressure are conducted on 1000 mm diameter (length 3000 mm and thickness, 5.9 mm) SS400 carbon steel. Failure behaviors of locally wall thinned cylinders were calculated by elasto-plastic analysis using finite element method. The elasto-plastic analysis was performed by FE code ANSYS. We simulated various types of local wall thinning that can be occurred at cylinder surface due to corrosion. Locally wall thinned shapes were machined to be different in size along the circumferential or axial direction of straight cylinder. In case of local wall thinned length 30 mm, internal pressure, when the crack initiation and the plastic collapse occur, didn't decrease dramatically even though local wall thinned depth was deep. In 400 mm, the more local wall thinned depth is deep, the more internal pressure decreased dramatically. In degraded materials, crack is easily initiation but plastic collapse was difficult.

  • PDF

Fracture mechanics analysis of multipurpose canister for spent nuclear fuels under horizontal/oblique drop accidents

  • Jae-Yoon Jeong;Cheol-Ho Kim;Hune-Tae Kim;Ji-Hye Kim;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4647-4658
    • /
    • 2023
  • In this paper, elastic-plastic fracture mechanics analysis is performed to determine the critical crack sizes of the multipurpose canister (MPC) manufactured using austenitic stainless steel under dynamic loading conditions that simulate drop accidents. Firstly, dynamic finite element (FE) analysis is performed using Abaqus v.2018 with the KORAD (Korea Radioactive Waste Agency)-21 model under two drop accident conditions. Through the FE analysis, critical locations and through-thickness stress distributions in the MPC are identified, where the maximum plastic strain occurs during impact loadings. Then, the evaluation using the failure assessment diagram (FAD) is performed by postulating an external surface crack at the critical location to determine the critical crack depth. It is found that, for the drop cases considered in this paper, the principal failure mechanism for the circumferential surface crack is found to be the plastic collapse due to dominant high bending axial stress in the thickness. For axial cracks, the plastic collapse is also the dominant failure mechanism due to high membrane hoop stress, followed by the ductile tearing analysis. When incorporating the strain rate effect on yield strength and fracture toughness, the critical crack depth increases from 10 to 20%.

A Parallel Axial-Flexural Hinge Model for Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames (용접 철골모멘트골조의 비선형 동적 연쇄붕괴해석을 위한 병렬 소성힌지 모델의 개발)

  • Lee, Cheol Ho;Kim, Seon Woong;Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.155-164
    • /
    • 2009
  • In this study, a computationally efficient parallel axial-flexural plastic hinge model is proposed for nonlinear dynamic progressive collapse analysis of welded steel moment frames. To this end, post-yield flexural behavior and the interaction of bending moment and axial force of the double-span beams in the column's missing event was first investigated by using material and geometric nonlinear parametric finite element analysis. A piece-wise linear parallel point hinge model that captures the moment-axial tension interaction was then proposed and applied to nonlinear dynamic progressive collapse analysis of welded steel moment frames with the use of the OpenSees Program. The accuracy as well as the efficiency of the proposed model was verified based on the inelastic dynamic finite element analysis results. The importance of including the catenary action effects for proper progressive collapse resistant analysis and design was also emphasized.

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

Yield line mechanism analysis of cold-formed channel sections with edge stiffeners under bending

  • Maduliat, S.;Bambach, M.R.;Zhao, X.L.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.883-897
    • /
    • 2012
  • Cold-formed channel sections are used in a variety of applications in which they are required to absorb deformation energy. This paper investigates the collapse behaviour and energy absorption capability of cold-formed steel channels with flange edge stiffeners under large deformation major-axis bending. The Yield Line Mechanism technique is applied using the energy method, and based upon measured spatial plastic collapse mechanisms from experiments. Analytical solutions for the collapse curve and in-plane rotation capacity are developed, and used to model the large deformation behaviour and energy absorption. The analytical results are shown to compare well with experimental values. Due to the complexities of the yield line model of the collapse mechanism, a simplified procedure to calculate the energy absorbed by channel sections under large bending deformation is developed and also shown to compare well with the experiments.

Collapse Characteristics of CFRP hat Shaped Structural Member with Various Orientation Angle for a Use of Lightweight (경량화용 CFRP 모자형 구조부재의 적층각도 변화에 따른 압궤특성)

  • Hwang, Woochae;Yang, Yongjun;Yang, Inyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.865-870
    • /
    • 2012
  • CFRP of the advanced composite materials as structure materials for vehicles has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness compared with conventional materials. This study is to investigate the energy absorption characteristics and collapse mode of CFRP single and double hat shaped structural member under the axial static collapse test. The CFRP single and double hat shaped structural members stacked at different angles (${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member). The axial static collapse tests were carried out for each member. Collapse mode and energy absorption characteristics of the each member were analyzed.

A parametric study on the use of passive fire protection in FPSO topside module

  • Friebe, Martin;Jang, Beom-Seon;Jim, Yanlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.826-839
    • /
    • 2014
  • Fire is a continuous threat to FPSO topside modules as large amounts of oil and gas are passing through the modules. As a conventional measure to mitigate structural failure under fire, passive fire protection (PFP) coatings are widely used on main structural members. However, an excessive use of PFP coatings can cause considerable cost for material purchase, installation, inspection and maintenance. Long installation time can be a risk since the work should be done nearly at the last fabrication stage. Thus, the minimal use of PFP can be beneficial to the reduction of construction cost and the avoidance of schedule delay. This paper presents a few case studies on how different applications of PFP have influence on collapse time of a FPSO module structure. A series of heat analysis and thermal elasto-plastic FE analysis are performed for different PFP coatings and the resultant collapse time and the amount of PFP coatings are compared with each other.

Collapse Initiation and Mechanisms for a Generic Multi-storey Steel Frame Subjected to Uniform and Travelling Fires

  • Rackauskaite, Egle;Kotsovinos, Panagiotis;Lange, David;Rein, Guillermo
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.265-283
    • /
    • 2021
  • To ensure that fire induced collapse of a building is prevented it is important to understand the sequence of events that can lead to this event. In this paper, the initiation of collapse mechanisms of generic a multi-storey steel frame subjected to vertical and horizontal travelling fires are analysed computationally by tracking the formation of plastic hinges in the frame and generation of fire induced loads. Both uniform and travelling fires are considered. In total 58 different cases are analysed using finite element software LS-DYNA. For the frame examined with a simple and generic structural arrangement and higher applied fire protection to the columns, the results indicate that collapse mechanisms for singe floor and multiple floor fires can be each split into two main groups. For single floor fires (taking place in the upper floors of the frame (Group S1)), collapse is initiated by the pull-in of external columns when heated beams in end bays go into catenary action. For single floor fires occurring on the lower floors(Group S2), failure is initiated (i.e. ultimate strain of the material is exceeded) after the local beam collapse. Failure in both groups for single floor fires is governed by the generation of high loads due to restrained thermal expansion and the loss of material strength. For multiple floor fires with a low number of fire floors (1 to 3) - Group M1, failure is dominated by the loss of material strength and collapse is mainly initiated by the pull-in of external columns. For the cases with a larger number of fire floors (5 to 10) - Group M2, failure is dominated by thermal expansion and collapse is mainly initiated by swaying of the frame to the side of fire origin. The results show that for the investigated frame initiation of collapse mechanisms are affected by the fire type, the number of fire floors, and the location of the fire floor. The findings of this study could be of use to designers of buildings when developing fire protection strategies for steel framed buildings where the potential for a multifloor fire exists.

Probabilistic Integrity Assessment of CANDU Pressure Tube for the Consideration of Flaw Generation Time (결함발생 시점을 고려한 CANDU 압력관 결함의 확률론적 건전성평가)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.155-160
    • /
    • 2001
  • This paper describes a probabilistic fracture mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, delayed hydride cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  • PDF

Plastic collapse behaviour of statically indeterminate beams with a crack under concentrated load (집중하중하의 균열을 갖는 부정정보의 소성붕괴거동)

  • 남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.67-74
    • /
    • 1996
  • The paper focuse on the effect of a crack subjects to collaspe behabiors of statically indeterminate beams under concentrated load. Through the experiment and calculation, it was revealed that the collaspe load of statically indeterminate beams is much higher than that of statically determinate beams. The cumulative AE event counts of statically determinate beams was less than that of statically indeterminate beams, and the center notch beams sas revealed less than that of the side notch beams.

  • PDF