• Title/Summary/Keyword: Plasmonic absorber

Search Result 2, Processing Time 0.013 seconds

Periodically Aligned Metal Nanoparticle Array for a Plasmonic Absorber and Its Fabrication Technique (플라즈모닉 흡수체를 위한 금속 나노입자 주기구조 제작 기술)

  • Choi, Minjung;Ryu, Yunha;Bae, Kyuyoung;Kang, Gumin;Kim, Kyoungsik
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.361-365
    • /
    • 2017
  • In this paper, we demonstrate a facile fabrication technique for a periodically aligned metal nanoparticle array, for a narrow-band plasmonic absorber. The metal nanoparticles are fabricated by e-beam evaporation and heat treatment processes on top of a periodic aluminum groove template. The plasmonic absorber is constructed with the transferred metal nanoparticle array, sputtered 33-nm-thick $Al_2O_3$, and 200-nm-thick metal reflector layers on silicon substrate. 46-nm-diameter and 76-nm-lattice metal-nanoparticle-array-based plasmonic absorber has performed as a narrow-band absorber with a central wavelength of 572 nm and full width at half maximum (FWHM) of 109.9 nm.

Plasmon-enhanced Infrared Spectroscopy Based on Metasurface Absorber with Vertical Nanogap

  • Hwang, Inyong;Lee, Jongwon;Jung, Joo-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.275-279
    • /
    • 2018
  • In this study, we introduce a sensing platform based on a plasmonic metasurface absorber (MA) with a vertical nanogap for the ultrasensitive detection of monolayer molecules. The vertical nanogap of the MA, where the extremely high near-field is uniformly distributed and exposed to the external environment, is formed by an under-cut structure between a metallic cross nanoantenna and the mirror layer. The accessible sensing area and the enhanced near-field of the MA further enhance the sensitivity of surface-enhanced infrared absorption for the target molecule of 1-octadecanethiol. To provide strong coupling between the molecular vibrations and plasmonic resonance, the design parameters of the MA with a vertical nanogap are numerically designed.