• Title/Summary/Keyword: Plasmas

Search Result 446, Processing Time 0.029 seconds

Preliminary Results on Plasma Counterflow Jets for Drag Reduction of a High Speed Vehicle (초고속 비행체 항력 감소를 위한 플라즈마 분사장치에 대한 예비 결과)

  • Kang, Seungwon;Choi, Jongin;Lee, Jaecheong;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.101-112
    • /
    • 2016
  • The characteristic analysis and fundamental test of a plasma generator is performed for drag reduction of a high speed vehicle. In high pressures, thermal plasmas is suitable for generating plasmas. The appropriate plasma torch is selected and used to generate thermal plasmas. The plasma torch, which can emit high-speed and high-pressure plasma jet, is suitable for generating plasma counterflow jet. In this study, the fundamental test and analysis for the plasma torch is summarized. Results show that supplying gas pressures and electrode gap of plasma torch are considered as critical parameters for generating plasma jets.

Detail relation of negative ion density with positive ion mass and sheath parameters

  • Kim, Hye-Ran;Woo, Hyun-Jong;Sun, Jong-Ho;Chung, Kyu-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.470-470
    • /
    • 2010
  • Negative ions are generated in fusion edge plasmas, material processing plasmas, ionospheric plasmas. Analytic formulas for the deduction of the absolute density of negative ions was given by using the current-voltage(IV) characteristics of two electric probes at two different pressures [1], and negative ion density has been measured by one electric probe using the current-voltage characteristics of three different pressures [2]. Ratios of ion and electron saturation currents and electron temperatures and sheath areas of different pressures are usually incorporated into two equations with two unknowns for the negative ion density. In the previous publications, the sheath factor(sheath area, sheath density, sheath velocity) and effective masses of background ions with different pressures are qualitatively incorporated for the deduction of negative density. In this presentation, the quantitative and detailed relation of negative ion density with sheath factor and effective masses are going to be given. The effect of these parameters on the change of IV characteristics will be addressed.

  • PDF

Spetroscopic Diagnostics of Reactive Plasma in a Facing Target Sputtering Unit (대향타겟트 스파터기에서 반응성 플라즈마의 스펙트로스코프 검진)

  • Na, Jong-Gab;Lee, Taek-Dong;Park, Soon-Ja
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.337-342
    • /
    • 1992
  • Spectroscopic diagnostics on reactive plasmas was carried out in a facing target sputtering unit with BaO +12Fe composite targets and 50% $O_2+$ Ar sputter gas. Spectra of rective plasmas were composed of peaks which were assigned to be Ba, B$a^+$, Fe, FeO, F$e^+$, Ar, $Ar^+$, O, $O^+$. As detecting positions in plasmas were far away from targets, the relative peak intensities of the ions and neutral species were decreased, but the relative intensities of the former decreased faster than those of the latter.

  • PDF

Why Are Cool Structures in the Universe Usually Filamentary?

  • Song, Inhyeok;Choe, Gwang Son;Yi, Sibaek;Jun, Hongdal
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.48.4-48.4
    • /
    • 2019
  • Small-scale shear flows are ubiquitous in the universe, and astrophysical plasmas are often magnetized. We study the thermal condensation instability in magnetized plasmas with shear flows in relation to filamentary structure formation in cool structures in the universe, representatively solar prominences and supernova remnants. A linear stability analysis is extensively performed in the framework of magnetohydrodynamics (MHD) with radiative cooling, plasma heating and anisotropic thermal conduction to find the eigenfrequencies and eigenfunctions for the unstable modes. For a shear velocity less than the Alfven velocity of the background plasma, the eigenvalue with the maximum growth rate is found to correspond to a thermal condensation mode, for which the density and temperature variations are anti-phased (of opposite signs). Only when the shear velocity in the k-direction is near zero, the eigenfunctions for the condensation mode are of smooth sinusoidal forms. Otherwise each eigenfunction for density and temperature is singular and of a discrete form like delta functions. Our results indicate that any non-uniform velocity field with a magnitude larger than a millionth of the Alfven velocity can generate discrete eigenfunctions of the condensation mode. We therefore suggest that condensation at discrete layers or threads should be quite a natural and universal process whenever a thermal instability arises in magnetized plasmas.

  • PDF

Calculation of Kappa-Averaged Collision Strengths of Silicon VIII Ion for a Non-Maxwellian Distribution

  • He, Jian;Zhang, Qingguo
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1310-1314
    • /
    • 2018
  • Non-Maxwellian distributions are found in the laboratory and space plasmas. For an accurate study of plasmas, the Kappa-averaged collision strengths of silicon VIII ion for $4^0S_{3/2}-2^0D_{3/2}$, $4^0S_{3/2}-2^0D_{5/2}$ and $2^0D_{3/2}-2^0D_{5/2}$ transitions are calculated for Kappa distributions with ${\kappa}=2$, 3 and 5 and for temperatures from $10^{4.5}K$ to $10^{6.5}K$. Results indicate that significant differences occur between the averaged collision strengths for the Maxwellian and the Kappa distributions. Fuythermore, and for each ${\kappa}$ value, the Kappa-averaged collision strengths vary in a complicated way with temperature for the $4^0S_{3/2}-2^0D_{3/2}$ and $4^0S_{3/2}-2^0D_{5/2}$ transitions while they decrease with increasing temperature for the $2^0D_{3/2}-2^0D_{5/2}$ transition. The calculation is significant if plasmas are to be studied for a non-Maxwellian distribution.

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF

Current status of Atomic and Molecular Data for Low-Temperature Plasmas

  • Yoon, Jung-Sik;Song, Mi-Young;Kwon, Deuk-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.64-64
    • /
    • 2015
  • Control of plasma processing methodologies can only occur by obtaining a thorough understanding of the physical and chemical properties of plasmas. However, all plasma processes are currently used in the industry with an incomplete understanding of the coupled chemical and physical properties of the plasma involved. Thus, they are often 'non-predictive' and hence it is not possible to alter the manufacturing process without the risk of considerable product loss. Only a more comprehensive understanding of such processes will allow models of such plasmas to be constructed that in turn can be used to design the next generation of plasma reactors. Developing such models and gaining a detailed understanding of the physical and chemical mechanisms within plasma systems is intricately linked to our knowledge of the key interactions within the plasma and thus the status of the database for characterizing electron, ion and photon interactions with those atomic and molecular species within the plasma and knowledge of both the cross-sections and reaction rates for such collisions, both in the gaseous phase and on the surfaces of the plasma reactor. The compilation of databases required for understanding most plasmas remains inadequate. The spectroscopic database required for monitoring both technological and fusion plasmas and thence deriving fundamental quantities such as chemical composition, neutral, electron and ion temperatures is incomplete with several gaps in our knowledge of many molecular spectra, particularly for radicals and excited (vibrational and electronic) species. However, the compilation of fundamental atomic and molecular data required for such plasma databases is rarely a coherent, planned research program, instead it is a parasitic process. The plasma community is a rapacious user of atomic and molecular data but is increasingly faced with a deficit of data necessary to both interpret observations and build models that can be used to develop the next-generation plasma tools that will continue the scientific and technological progress of the late 20th and early 21st century. It is therefore necessary to both compile and curate the A&M data we do have and thence identify missing data needed by the plasma community (and other user communities). Such data may then be acquired using a mixture of benchmarking experiments and theoretical formalisms. However, equally important is the need for the scientific/technological community to recognize the need to support the value of such databases and the underlying fundamental A&M that populates them. This must be conveyed to funders who are currently attracted to more apparent high-profile projects.

  • PDF