DOI QR코드

DOI QR Code

Calculation of Kappa-Averaged Collision Strengths of Silicon VIII Ion for a Non-Maxwellian Distribution

  • He, Jian (School of Physics and Engineering, Henan University of Science and Technology) ;
  • Zhang, Qingguo (School of Physics and Engineering, Henan University of Science and Technology)
  • 투고 : 2018.05.04
  • 심사 : 2018.07.10
  • 발행 : 2018.11.15

초록

Non-Maxwellian distributions are found in the laboratory and space plasmas. For an accurate study of plasmas, the Kappa-averaged collision strengths of silicon VIII ion for $4^0S_{3/2}-2^0D_{3/2}$, $4^0S_{3/2}-2^0D_{5/2}$ and $2^0D_{3/2}-2^0D_{5/2}$ transitions are calculated for Kappa distributions with ${\kappa}=2$, 3 and 5 and for temperatures from $10^{4.5}K$ to $10^{6.5}K$. Results indicate that significant differences occur between the averaged collision strengths for the Maxwellian and the Kappa distributions. Fuythermore, and for each ${\kappa}$ value, the Kappa-averaged collision strengths vary in a complicated way with temperature for the $4^0S_{3/2}-2^0D_{3/2}$ and $4^0S_{3/2}-2^0D_{5/2}$ transitions while they decrease with increasing temperature for the $2^0D_{3/2}-2^0D_{5/2}$ transition. The calculation is significant if plasmas are to be studied for a non-Maxwellian distribution.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Henan Province's Education Department's

참고문헌

  1. S. Zaheer, G. Murtaza and H. A. Shah, Phys. Plasmas. 13, 062109 (2006). https://doi.org/10.1063/1.2212830
  2. D. Summers and R. M. Thorne, Phys. Fluids B. 3, 1835 (1991).
  3. M. L. Goodman, Astrophys. J. 503, 938 (2009).
  4. G. Livadiotis and D. J. McComas, J. Geophys. Res. Atmos. 114, A11105 (2009). https://doi.org/10.1029/2008JD010346
  5. S. P. Owocki and J. D. Scudder, Astrophys. J. 270, 758 (1983). https://doi.org/10.1086/161167
  6. J. Dudik, G. Del Zanna, E. Dzifcakova, H. E. Mason and L. Golub, Astrophys, J. Lett. 780, L12 (2014).
  7. E. Dzifcakova and A. Kulinova, Astron. Astrophys. 531, A122 (2011). https://doi.org/10.1051/0004-6361/201016287
  8. J. He and Q. G. Zhang, Adv. Space Res. 51, 2002 (2013). https://doi.org/10.1016/j.asr.2013.01.018
  9. J. He and Q. G. Zhang, J. Korean Phys. Soc. 66, 1508 (2015). https://doi.org/10.3938/jkps.66.1508
  10. K. Wilhelm et al., Sol. Phys. 170, 75 (1997). https://doi.org/10.1023/A:1004923511980
  11. J. He, Q. G. Zhang and Q. Z. Li, J. Korean Phys. Soc. 68, 994 (2016). https://doi.org/10.3938/jkps.68.994
  12. H. P. Warren and A. R. Winebarger, Astrophys. J. 596, L113 (2003). https://doi.org/10.1086/379094
  13. A. Mohan, E. Landi and B. N. Dwivedi, Astrophys. J. 582, 1162 (2003). https://doi.org/10.1086/344823
  14. K. L. Bell, A. Matthews and C. A. Ramsbottom, Mon. Not. R. Astron. Soc. 322, 779 (2001). https://doi.org/10.1046/j.1365-8711.2001.04183.x
  15. R. P. Stafford, K. L. Bell and A. Hibbert, J. Phys. B: Atom. Opt. Phys. 25, 5449 (1992). https://doi.org/10.1088/0953-4075/25/24/023
  16. G. Livadiotis and D. J. McComas, J. Geophys. Res. 114, A11105 (2009). https://doi.org/10.1029/2008JD010346