• Title/Summary/Keyword: Plasma-nitriding

Search Result 133, Processing Time 0.031 seconds

INDUSTRIAL STATUS OF DRY PLATING AS AN ALTERNATIVE TO WET PLATING PROCESS IN KOREAN SURFACE FINISHING INDUSTRY

  • Kwon, Sik-Chol;Baek, Woon-Sung;Lee, Gun-Hwan;Rha, Jong-Joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.253-256
    • /
    • 1999
  • Wet plating has been initiated and developed as a major surface finishing technology as of the long customized and highly productive process until now. As the external compression by virtue of the environmental preservation becomes stricter, there has been new move to adapt dry plating line instead of conventional wet plating one in domestic surface finishing industry. Dry plating, so-called, plasma surface technology has been developed in semiconducting industry and becomes a key technology to be useful as an alternative to wet plating in surface finishing industry. The historical progress of domestic surface finishing industry was outlined with the background on the adaptation of three dry plating processes-plasma spraying, plasma nitriding and ion plating. The present status of domestic industrial activity was covered on major alternative to wet plating.

  • PDF

Pulsed Bias Inductively Coupled Plasma Nitriding of Chromium Electroplated AISI 316L Stainless Steel for PEMFC Application (고분자 전해질 연료전지에 적용하기 위한 크롬 도급 AISI 316L 스테인리스강의 펄스 바이어스 유도결합 플라즈마 질화)

  • Kim, Min-U;Han, Dong-Hun;Hong, Won-Hyeok;Lee, Jeong-Jung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.145-146
    • /
    • 2009
  • 크롬 도금된 AISI 316L 스테인리스강에 펄스 바이어스를 사용한 유도결합 플라즈마로 질화 처리하여 고분자 전해질 연료전지용 분리판에 적합한 물성을 확인하였다.

  • PDF

The corrosion and electrical property of AISI 316L by plasma nitriding (플라즈마 질화처리를 이용한 AISI 316L의 부식특성과 전기적 특성 분석)

  • Hong, Won-Hyeok;Han, Dong-Hun;Choe, Hyo-Seok;Lee, Jeong-Jung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.147-148
    • /
    • 2009
  • 스테인리스강인 AISI 316L의 질화처리를 통하여 고분자 전해질 연료전지에 분리판에 적용가능한 특성을 측정하였다. 질화처리를 통하여 면간접촉저항을 $20m{\Omega}cm^2$ 정도로 낮게 만들었으며 부식특성도 원래의 스테인리스강과 비슷한 값을 나타내었다.

  • PDF

The Study of Low Temperature Screen Plasma Nitriding Process on Chromium-Molybdenum Steel (스크린플라즈마 공정기술에 의한 저합금 금형강의 질화거동)

  • Kim, Sang-Gwon;Yeo, Guk-Hyeon;Lee, Jae-Hun;Kong, Jung-Hyun;Okumiya, Masahiro
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.294-295
    • /
    • 2014
  • 스크린 플라즈마 기술은 저온에서 가열과 동시에 플라즈마에 의한 확산층을 형성할 수 있는 매우 큰 장점을 가진 기술이다. 특히 저합금강의 내부 경도 저하를 최소화 한 상태에서 표면경도를 올려 플라스틱 금형강 등에 이를 적용할 수 있는 연구를 진행하였고, 이에 대한 결과를 보고하고자 한다.

  • PDF

The Application of Plasma Nitrocarburizing and Plasma Post Oxidation Technology to the Automobile Engine Parts Shafts (자동차 엔진부품용 Shaft에 플라즈마 산질화기술 적용)

  • Jeon, Eun-Kab;Park, Ik-Min;Lee, In-Sup
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.681-686
    • /
    • 2006
  • Plasma nitrocarburising and plasma post oxidation were performed to improve the wear and corrosion resistance of S45C and SCM440 steel by a plasma ion nitriding system. Plasma nitrocarburizing was conducted for 3h at $570^{\circ}C$ in the nitrogen, hydrogen and methane atmosphere to produce the ${\varepsilon}-Fe_{2-3}$(N, C) phase. Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of $500^{\circ}C$ for 1 hour. The very thin magnetite ($Fe_3O_4$) layer $1-2{\mu}m$ in thickness on top of the $15{\sim}25{\mu}m$ ${\varepsilon}-Fe_{2-3}$(N, C) compound layer was obtained by plasma post oxidation. A salt spray test and electrochemical testing revealed that in the tested 5% NaCl solution, the corrosion characteristics of the nitrocarburized compound layer could be further improved by the application of the superficial magnetite layer. Throttle valve shafts were treated under optimum plasma processing conditions. Accelerated life time test results, using throttle body assembled with shaft treated by plasma nitrocarburising and post oxidation, showed that plasma nitrocarburizing and plasma post oxidation processes could be a viable technology in the very near future which can replace $Cr^{6+}$ plating.

The Microstructures and Properties of Duplex Layer on the Tool Steel Formed by Post-oxidation and Sulfnitriding (금형공구강의 후산화와 침류질화에 의해 형성된 복합층의 조직과 특성에 관한 연구)

  • Lee, J.S.;Klm, H.G.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.2
    • /
    • pp.81-88
    • /
    • 2001
  • The effects of post-oxidation and sulfnitriding treatments on the phase transformation in the nitrided case of tool steels have been studied. Dense and compact $Fe_3O_4$ layer was formed at the outer surface of nitride compound layer by post-oxidation treatment and multi layer of iron sulfide(FeS) was formed in the compound layer by sulfnitriding treatment. The surface hardness decreased because of formation of the soft oxide or sulfide at the nitride surface. Diffusion layer of nitride case was not affected by post-oxidation treatment or sulfnitriding treatment of nitrided alloy tool steels.

  • PDF

Plasma Assisted Nitriding of Stainless Steel Type 304L (304L 스테인리스 강의 플라즈마 질화처리)

  • Park, J.R.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.255-265
    • /
    • 1995
  • Stainless steel type 304L has been nitrided in the low pressure (600Pa) and high nitrogen (80% $N_2$+20% $H_2$) environment for 5 hours by the square-wave-pulsed-d.c. plasma as a function of temperature $400{\sim}550^{\circ}C$ and pulsation. At the lower temperature range of $400{\sim}500^{\circ}C$ and at the relatively high ratio of pulse duration to pulse period. "S-phase" has been developed in the form of thin nitrided surface layer which has many cracks, leading to be nearly impossible for the industrial anti-wear and anti-corrosion applications. At the higher temperature up to $550^{\circ}C$ with the increasing ratio of the pulse duration to pulse period up to $50{\mu}s/100{\mu}s$, the nitrided layer, whose growth rate has increased also, has been composed mainly of CrN and $Fe_4N$ phases and has become thick, uniform and nearly crack-free.

  • PDF

Change of Surface Characterisstics of Cemented Carbide by Nitriding (초경합금의 플라즈마 질화처리에 의한 표면물성 변화)

  • 김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.3
    • /
    • pp.167-174
    • /
    • 1997
  • WC-C0 base cemented carbides were plasma nitrided to obtain more hadened surface layer. The surface hardness of Hv1338 which is higher than a non-treated ane by 30%, and the hardened layer thickness of about 50$\mu\textrm{m}$ were obtained by the treatment of 3hrs under the conditions of $550^{\circ}C$, and 5torr of gas pressure of which composition was 1:1 of $N_2:H_2$. The nitrided surfaces has WIN and W2N phases in the non-coated samples and AIN phase in the alumina coated sampled as the results of X-ray results, and showed surface roughnness of 5$\mu\textrm{m}$ which were caused by the sputtering action of the plasma gasee. The hardenened layer exihibits an enhanced wear resistance the cuttability test.

  • PDF

Improvement of Adhesion Strength of DLC Films on Nitrided Layer Prepared by Linear Ion Source

  • Shin, Chang-Seouk;Kim, Wang-Ryeol;Park, Min-Seok;Jung, Uoo-Chang;Chung, Won-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.177-179
    • /
    • 2011
  • The purpose of this study is to enhance an adhesion between substrate and Diamond-like Carbon (DLC) film. DLC has many outstanding properties such as low friction, high wear resistance and corrosion resistance. However, it is difficult to achieve enough adhesion because of weak bonding between DLC film and the substrate. For improvement adhesion, a layer between DLC film and the substrate was prepared by dual post plasma. DLC film was deposited on nitrided layer by linear ion source. The composed compound layer between substrate and DLC film was investigated by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The synthesized bonding structure of DLC film was analyzed using a micro raman spectrometer. Mechanical properties were measured by nano-indentation. In order to clarify the mechanism for improvement in adhesive strength, it was observed by scratch test.

  • PDF