• 제목/요약/키워드: Plasma thiols

검색결과 9건 처리시간 0.018초

Menadione과 Plasma내의 Protein Thiol의 비효소적인 화학반응에 의한 활성산소 생성 (Generation of Reactive Oxygen Species by Nonenzymatic Reaction of Menadione with Protein Thiols in Plasma)

  • 정선화;이무열;이주영;장문정;정진호
    • Toxicological Research
    • /
    • 제13권3호
    • /
    • pp.223-228
    • /
    • 1997
  • Quinones have been reported to undergo nonenzymatic reaction with thiols to generate reactive oxygens. It is therefore possible that the nonenzymatic reaction of quinones with thiols in plasma could lead to potentJared cellular toxicity or disease. When 1 mM menadione was added in plasma under pH 11.2, 7.4 and 5.0, the increase in oxygen consumption rate was the order of pH 11.2 > pH 7.4 > pH 5.0. In addition, oxygen consumption rates under plasma anticoagulated with trisodium citrate solution (pH 7.85) was significantly higher than those with acid-citrate-dextrose solution (pH 6.87). SOD and catalase reduced the rate of oxygen consumption induced by menadione in plasma. Taken together, these results suggest that the menadione-induced increased oxygen consumption was due to nonenzymatic reaction of menadione with thiols in the plasma. The presence of plasma has an additive effect on the increased oxygen consumption rates induced by the menadione treatments on our model tissue, platelets, as compared between washed platelet (WP) and platelet rich plasma (PRP). Cytotoxicity, as determined by LDH release, are well correlated with the oxygen consumption rates observed in each system and strongly suggest that menadione-induced cytotoxicity can be increased with the presence of blood plasma.

  • PDF

GENERATION OF FREE RADICALS BY INTERACTION OF IRON WITH THIOLS IN HUMAN PLASMA

  • Lee, Seung-Jin;Chung, Ka-Young;Chung, Jin-Ho
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.93-93
    • /
    • 2002
  • Oxidative stress has been associated with a number of diseases in humans. Among the sources that can generate oxidative stress, it has been reported that iron can generate reactive oxygen species (ROS) with thiol. In iron overload state, increased thiol levels in plasma appeared to be associated with human mortality.(omitted)

  • PDF

Low Nourishment of Vitamin C Induces Glutathione Depletion and Oxidative Stress in Healthy Young Adults

  • Waly, Mostafa I.;Al-Attabi, Zahir;Guizani, Nejib
    • Preventive Nutrition and Food Science
    • /
    • 제20권3호
    • /
    • pp.198-203
    • /
    • 2015
  • The present study was conducted to assess the status of vitamin C among healthy young adults in relation to serum antioxidant parameters [glutathione (GSH), thiols, and total antioxidant capacity, (TAC)], and oxidative stress markers [malondialdehyde (MDA), and nitrites plus nitrates (NN)]. A prospective study included 200 young adults, and their dietary intake was assessed by using food diaries. Fasting plasma vitamin C, serum levels of GSH, thiols, TAC, MDA, and NN were measured using biochemical assays. It was observed that 38% of the enrolled subjects, n=76, had an adequate dietary intake of vitamin C (ADI group). Meanwhile, 62%, n=124, had a low dietary intake of vitamin C (LDI group) as compared to the recommended dietary allowances. The fasting plasma level of vitamin C was significantly higher in the ADI group as compared to the LDI group. Oxidative stress in the sera of the LDI group was evidenced by depletion of GSH, low thiols levels, impairment of TAC, an elevation of MDA, and increased NN. In the ADI group, positive correlations were found between plasma vitamin C and serum antioxidant parameters (GSH, thiols, and TAC). Meanwhile, the plasma vitamin C was negatively correlated with serum MDA and NN levels. This study reveals a significant increase of oxidative stress status and reduced antioxidant capacity in sera from healthy young adults with low intake of the dietary antioxidant, vitamin C.

Generation of Free Radicals by Interaction of Iron with Thiols in Human Plasma.

  • Lee, S. J.;K. Y. Chung;J. H. Chung.
    • 한국식품위생안전성학회:학술대회논문집
    • /
    • 한국식품위생안전성학회 2002년도 춘계학술발표대회 및 심포지움
    • /
    • pp.138-138
    • /
    • 2002
  • Oxidative stress has been associated with a number of diseases in human. Among the sources that can generate oxidative stress, it has been reported that iron can generate reactive oxygen species (ROS)with thiol. In iron overload state, increased thiol levels in plasma appeared to be associated with human mortality. In this study we examined whether iron could interact with thiols in plasma, generating ROS. In human plasma, unlike with Fe(III), Fe(II) increased lucigenin-enhanced chemiluminescence in concentration-dependent manner, and this was inhibited by SOD. Boiling of plasma did not affect chemiluminescence induced by Fe(II). Hovever, thiol depletion in plasma by pretreatment with N-ethylmaleimide (NEM)decreased Fe(II)-induced chemiluminescence significantly, suggesting that Fe(II) generated superoxide anion by the nonenzymatic reaction with plasma thiol. Consistent with this findings, albumin, the major thiol contributor in plasma, also generated ROS with Fe(II) and this generation was inhibited by pretreatment with NEM. Treatment with Fe(II) to plasma resulted un significant reduction of oxygen radical absorbance capacity (ORAC) value, suggest that total antioxidant capacity could diminished in iron overload state. In conclusion, In iron overload state, plasma may be affected by oxidative stress mediated by nonenzymatic reaction of Fe (II)with plasma thiol.

  • PDF

Chemical-Induced Cytotoxicity in Platelet Rich Plasma Isolated from Rats

  • Seung, Sang-Ae;Chung, Seung-Min;Lee, Sun-Koo;Lee, Joo-Young;Kim, Jeong-Sun;Chung, Jin-Ho
    • Toxicological Research
    • /
    • 제13권3호
    • /
    • pp.229-235
    • /
    • 1997
  • The elevation of intracellular calcium in various tissues due to oxidative stress induced by either menadione or adriamycin has been well documented. The increase of calcium level in platelets results in aggregation of platelets. To test the hypothesis that chemically induced calcium elevations can play a role in platelet aggregation, we have studied the effects of menadione and adriamycin on aggregation of platelets isolated from female rats. Treatment with menadione and adriamycin to platelet rich plasma (PRP) appeared to induce platelet aggregations up to 60%, as determined by aggregometry. However, exposure of PRP to rnenadione or adriamycin led to a loss of viability, as measured by lactate dehydrogenase (LDH) leakage. Morphological studies of platelets revealed that, when PRP was treated with menadione, aggregates of platelets were not observed and the numbers of platelets were decreased significantly. This suggests that menadione and adriamycin decreased turbidity by inducing platelet lysis rather than platelet aggregation. These cellular toxicities induced by menadione or adriamycin was not correlated with oxygen consumption rate but with depletion of protein thiols, suggesting that protein thiols might play an important role in chemical-induced platelet toxicity.

  • PDF

A selective Assay To Measure Antioxidant Capacity in Both The Aqueous and Lipid Compartments of Plasma

  • Giancarlo Aldini;Yeum, Kyung-Jin;Robert. M. Russel;Norman I. Krinsky
    • Nutritional Sciences
    • /
    • 제6권1호
    • /
    • pp.12-19
    • /
    • 2003
  • The measurement of the total antioxidant capacity (TAC) of human plasma has been widely applied in nutritional science, for example to evaluate the antioxidant contribution of dietary components and to study, although indirectly, the bioavailability of dietary antioxidants. Several methods have been proposed for the measurement of TAC, most of them based on the ability of plasma to withstand the oxidative damage induced by aqueous radicals. Although plasma contains both hydrophilic and lipophilic antioxidants that interact through extensive cross-talk in most of the methods employed for the TAC measurement, the hydrophilic antioxidants such as ascorbic acid, uric acid, and protein thiols mainly contribute to the total antioxidant plasma capacity (almost 70%) while lipophilic antioxidants embedded in the lipoproteins (carotenoids, a-tocopherol, ubiquino1-10) participate only in a negligible amount (less than 5%). The present paper reviews the analytical methods used to assess the TAC and in particular focuses on new approaches that are capable of distinguishing the antioxidant capacity of both the aqueous and lipid compartments of plasma. The general principle of the method as well as some in vitro and ex vivo applications will be discussed within the text.

Single-walled Carbon Nanotube-triethylammonium Ionic Liquid as a New Catalytic System for Michael Reaction

  • Attri, Pankaj;Choi, Eun Ha;Kwon, Gi-Chung;Bhatia, Rohit;Gaur, Jitender;Arora, Bharti;Kim, In Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.3035-3040
    • /
    • 2014
  • A new efficient catalytic method for aza/thia-Michael addition reactions of amines/thiols with higher product yields has been developed. Combining single-walled carbon nanotubes (SWCNT) with triethylammonium hydrogen phosphate (TEAP) ionic liquid (IL) can work as a catalyst. We utilized Raman spectroscopy to gain insight into the interactions between IL and SWCNT. The interactions between SWCNT with TEAP were confirmed by the increasing intensity ratios and spectral shift in wavelength of the Raman D and G bands of SWCNT. Further, the morphology of the resulting composite materials of TEAP and SWCNT was determined by using scanning electron microscopy (SEM). Higher product yield in reduced reaction time is the key advantage of using bucky gel as a catalyst for Michael reaction.

A Rat Liver Lysosomal Membrane Flavin-Adenine Dinucleotide Phosphohydrolase

  • Shin, Hae-Ja;Lim, Woon-Ki
    • BMB Reports
    • /
    • 제29권3호
    • /
    • pp.253-260
    • /
    • 1996
  • An enzyme that hydrolyzes flavin-adenine dinucleotide (FAD) was found to be present in rat liver lysosomal membrane prepared from Triton WR-1339 filled lysosomes (tritosomes) purified by flotation on sucrose. This FAD phosphohydrolase (FADase) exhibited optimal activity at pH 8.5 and had an apparent Km of approximately 3.3 mM. The activity was decreased 50~70% by dialysis against EDTA and this was restored by $Zn^{2+}$, $Mg^{+2}$, $Hg^{+2}$, and $Ca^{+2}$ ions inhibited the enzyme, but $F^-$ and molybdate had no effect. The enzyme was also inhibited by p-chloromercuribenzoate (pCMB), reduced glutathione and other thiols, cyanide, and ascorbate. The presence of ATP, ADP, AMP. ${\alpha}-{\beta}-methylene$ ATP, AMP-p-nitrophenyl phosphate (PNP), GMP, and coenzyme A (CoA) decreased the activity on FAD, but pyrimidine nucleotides, adenosine, adenine, or $NAD^+$ were without effect. Phosphate stimulated the activity slightly. FAD phosphohydrolase activity was separated from ATPase and inorganic pyrophosphatase activities by solubilization with detergents and polyacrylamide gel electrophoresis and by linear sucrose density gradient centrifugation suggesting that the enzyme is different from ATPase, inorganic pyrophosphatase, and soluble lysosomal FAD pyrophosphatase. Paper chromatography showed that FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP which were further hydrolyzed to riboflavin and AMP by phosphatases known to be present in lysosomal membranes. Incubation of the intact Iysosomes with pronase showed that the active site of FAD phosphohydrolase must be oriented to the cytosol. The FAD hydrolyzing activity was detected in Golgi, microsome, and plasma membrane, but not in mitochondria or soluble lysosomal preparations.

  • PDF