• Title/Summary/Keyword: Plasma targeting

Search Result 48, Processing Time 0.022 seconds

Gene Targeting of Low Density Lipoprotein(LDL) Receptor Related Protein 5(LRP5) Involved in the Wnt Signaling Pathway

  • Jeong, Young-Hee;Kim, Suck-Ho;Kim, Dong-Ho;Moon, Seung-Ju;Tokuo Yamamoto;Kang, Man-Jong
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.82-82
    • /
    • 2002
  • The Wnt signaling pathway plays pivotal roles in embryonic development and oncogenesis through various signaling molecules inculding Frizzled receptor, recently characterized LRP5/6 and Dickkopf protein. Although Wnt signaling has been characterized in both developmental and oncogenic processes, little is known about its function in the normal adult. The ability of LRP5 to bind apolipoprotein E(apoE) and the abundant expression of LRP5 transcripts in hepatocytes, raise the possibility that LRP5 plays a role in the hepatic clearance of ApoE-containing chylomicron remonants, a major plasma lipoprotein carrying diet-derived cholesterol. (omitted)

  • PDF

Targeting Glutamine Metabolism for Cancer Treatment

  • Choi, Yeon-Kyung;Park, Keun-Gyu
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.19-28
    • /
    • 2018
  • Rapidly proliferating cancer cells require energy and cellular building blocks for their growth and ability to maintain redox balance. Many studies have focused on understanding how cancer cells adapt their nutrient metabolism to meet the high demand of anabolism required for proliferation and maintaining redox balance. Glutamine, the most abundant amino acid in plasma, is a well-known nutrient used by cancer cells to increase proliferation as well as survival under metabolic stress conditions. In this review, we provide an overview of the role of glutamine metabolism in cancer cell survival and growth and highlight the mechanisms by which glutamine metabolism affects cancer cell signaling. Furthermore, we summarize the potential therapeutic approaches of targeting glutamine metabolism for the treatment of numerous types of cancer.

Studies on the Interaction of Glut4 and Cytoskeletal Protein (Glut4와 Cytoskeletal Protein의 상호작용에 관한 연구)

  • 김미영;이경림
    • Biomolecules & Therapeutics
    • /
    • v.4 no.4
    • /
    • pp.398-401
    • /
    • 1996
  • The glucose transporters found in the plasma membrane of all animal cells are known to have 12 putative transmembrane domains. Among 7 cytoplasmic loops, the fourth loop is the largest one. Since previous studies showed that cofilin, an actin-modulating protein, was found to interact with the largest cytoplasmic loop of (Na, K)ATPase, we tested if cofilin interacts with the largest cytoplasmic loop of Glut4. We demonstrated by the two-hybrid system that the largest cytoplasmic loop of Glut4 did not show any interaction with cofilin, suggesting that cofilin is not required for the membrane targeting process of other membrane proteins but only for a P-type ATPase.

  • PDF

Sorting of the Human Folate Receptor in MDCK Cells

  • Kim, Chong-Ho;Park, Young-Soon;Chung, Koong-Nah;Elwood, P.C.
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.362-369
    • /
    • 2004
  • The human folate receptor (hFR) is a glycosylphosphatidylinositol (GPI) linked plasma membrane protein that mediates delivery of folates into cells. We studied the sorting of the hFR using transfection of the hFR cDNA into MDCK cells. MDCK cells are polarized epithelial cells that preferentially sort GPI-linked proteins to their apical membrane. Unlike other GPI-tailed proteins, we found that in MDCK cells, hFR is functional on both the apical and basolateral surfaces. We verified that the same hFR cDNA that transfected into CHO cells produces the hFR protein that is GPI-linked. We also measured the hFR expression on the plasma membrane of type III paroxysmal nocturnal hemoglobinuria (PNH) human erythrocytes. PNH is a disease that is characterized by the inability of cells to express membrane proteins requiring a GPI anchor. Despite this defect, and different from other GPI-tailed proteins, we found similar levels of hFR in normal and type III PNH human erythrocytes. The results suggest the hypothesis that there may be multiple mechanisms for targeting hFR to the plasma membrane.

Solution Plasma Synthesis of BNC Nanocarbon for Oxygen Reduction Reaction

  • Lee, Seung-Hyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.332-336
    • /
    • 2018
  • Alkaline oxygen electrocatalysis, targeting anion exchange membrane alkaline-based metal-air batteries has become a subject of intensive investigation because of its advantages compared to its acidic counterparts in reaction kinetics and materials stability. However, significant breakthroughs in the design and synthesis of efficient oxygen reduction catalysts from earth-abundant elements instead of precious metals in alkaline media still remain in high demand. One of the most inexpensive alternatives is carbonaceous materials, which have attracted extensive attention either as catalyst supports or as metal-free cathode catalysts for oxygen reduction. Also, carbon composite materials have been recognized as the most promising because of their reasonable balance between catalytic activity, durability, and cost. In particular, heteroatom (e.g., N, B, S or P) doping on carbon materials can tune the electronic and geometric properties of carbon, providing more active sites and enhancing the interaction between carbon structure and active sites. Here, we focused on boron and nitrogen doped nanocarbon composit (BNC nanocarbon) catalysts synthesized by a solution plasma process using the simple precursor of pyridine and boric acid without further annealing process. Additionally, guidance for rational design and synthesis of alkaline ORR catalysts with improved activity is also presented.

In Vivo Tumor Cell Distribution of Antibody-Endostatin Fusion Protein for Tumor-Specific Targeting and Pharmacokinetics (암세포 표적지향화를 위한 항체-엔도스타틴 융합단백질의 체내동태 및 종양으로의 이행성)

  • Kang, Young-Sook;Lee, Na-Young
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.4
    • /
    • pp.287-292
    • /
    • 2003
  • A novel antitumor agent, antibody-endostatin fusion protein $(anti-HER2/neu\;IgG3C_H3-Endostatin,\;AEFP)$ formed by genetic engineering procedure from antibody (Ab) which specifically targets to tumor cells ad angiogenesis inhibitor, endostatin (Endo) that has excellent antitumor effect, minimizes the toxicity of normal cells and selectively kills only tumor cells. The purpose of this study is to evaluate the phamacokinetic parameters and to analyze the localization of AEFP. After an intravenous injection of $150\;{\mu}l\;(5\;{\mu}Ci)\;[^{125}I]Ab,\;[^{125}I]AEFP$ to mice, blood was collected though retroorbital plexus from 15 min to 2880 min. Following the jugular vein injetion of $150\;{\mu}l\;(10\;{\mu}Ci)\;[^{125}I]Endo$, blood was collected by the use of carotid artery cannulation from 0.25 min to 30 min. Consequently, Endo was very rapidly removed from plasma compartment within 30 min. On the other hand, AEFP similar to Ab was slowly cleared from plasma. Also, Endo was metabolized about 40% within 30 min. However, AEFP was shown to metabolize less than 10% within 2880 min. The organ distribution of Endo was in order kidney, lung, spleen. Both Ab and AEFP were localized in order spleen, kidney, liver. Futhermore the tumor/blood distribution ratio of AEFP at 96 hours after injection is about 20 times higher than it of Endo at one hour after injection. In conclusion, these studies demonstrate that the anti-cancer or suppression of angiogenesis effect of Endo may be improved by the use of AEFP because the longer half life and stability of AEFP is able to selectively target antigens expressed on tumors.

The Effect of miR-361-3p Targeting TRAF6 on Apoptosis of Multiple Myeloma Cells

  • Fan, Zhen;Wu, Zhiwei;Yang, Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.197-206
    • /
    • 2021
  • microRNA-361-3p (miR-361-3p) is involved in the carcinogenesis of oral cancer and pancreatic catheter adenocarcinoma, and has anti-carcinogenic effects on non-small cell lung cancer (NSCLC). However, its effect on multiple myeloma (MM) is less reported. Here, we found that upregulating the expression of miR-361-3p inhibited MM cell viability and promoted MM apoptosis. We measured expressions of tumor necrosis factor receptor-associated factor 6 (TRAF6) and miR-361-3p in MM cells and detected the viability, colony formation rate, and apoptosis of MM cells. In addition, we measured expressions of apoptosis-related genes Bcl-2, Bax, and Cleaved caspase-3 (C caspase-3). The binding site between miR-361-3p and TRAF6 was predicted by TargetScan. Our results showed that miR-361-3p was low expressed in the plasma of MM patients and cell lines, while its overexpression inhibited viability and colony formation of MM cells and increased the cell apoptosis. Furthermore, TRAF6, which was predicted to be a target gene of miR-361-3p, was high-expressed in the plasma of patients and cell lines with MM. Rescue experiments demonstrated that the effect of TRAF6 on MM cells was opposite to that of miR-361-3p. Upregulation of miR-361-3p induced apoptosis and inhibited the proliferation of MM cells through targeting TRAF6, suggesting that miR-361-3p might be a potential target for MM therapy.

Hepatic Uptake and Stability of Acyclovir-Asialofetuin Conjugate (아시클로버-아시알로페투인 접합체의 간 포획 및 안정성)

  • Son, Sung-Ho;Huh, Keun;Lee, Young-Dae;Oh, Doo-Man;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • For the purpose of improving the chemotherapeutic index of acyclovir(ACV), it was conjugated with asialofetuin(AF), which has been reported to enter into hepatocytes. When $[H^3]$ acyclovir in itself or its conjugate were administered to rats, the latter was taken up more selectively by the liver than any other tissues. The stability of ACVMP-AF conjugate in phosphate buffer (pH 5.0) and rat liver homogenate showed a pseudo-first order profile. ACVMP-AF, however, was relatively stable in pH7.4 phosphate buffer and rat plasma. The conjugate was added to the isolated rat hepatocyte and cellular uptake was monitored by scintillation counting for up to 6 hours at $37^{\circ}C$. Hepatocytes incubated with the conjugate exhibited radioactivities significantly enhanced over control levels dose-dependently, i.e., a 3-40 fold increase in radioactivities was observed over controls at the conjugate concentrations of $0.1-10\;{\mu}g/ml$. The AUQ in the liver, kidney, spleen, intestine and lung was higher in treatment with ACVMP-AF than that in treatment with ACV. In treatment with ACVMP-AF, the weighted-average overall drug targeting efficiency(Te) for the liver was higher than in treatment with ACV(57.00 vs 13.31 %), and the weighted-average tissue exposure(Re) was 5.03 for the liver. These results indicated that ACVMP-AF conjugate was rapidly taken up by hepatocytes and could be an efficient and selective hepatic targeting system.

  • PDF

Mesenteric Lymphatic Delivery of Oral Anticancer Tegafur by Emulsion Formulations (유제화에 의한 경구용 항암제인 테가푸르의 장관 임파수송)

  • Lee, Yong-Bok;Nam, Kweon-Ho;Chang, Woo-Ik;Oh, In-Joon;Koh, Ik-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • W/O and O/W emulsions of tegafur (50 mg/5 ml/kg) were orally administered to rats to compare with their mesenteric lymphatic delivery effects. And also in order to demonstrate the lymph targeting associated to the oral route, it was deemed necessary to investigate the fate of solution after oral administration as a control. Lymph and plasma samples were periodically taken from each subject of mesenteric lymphatic duct cannulated rats. Then, lymph and plasma levels of tegafur and its active metabolite, 5-FU, were simultaneously observed. Also pharmacokinetic parameters were compared with each others. On the other hand, most previous studies of lymphatic transport have not addressed the question of whether an increase in mesenteric or thoracic lymph transport by the manipulation of a suspected variable was due to a selective delivery to the intestinal lymphatics or an overall increase availability. Therefore, based on a physiologically based pharmacokinetic model which represents the characteristics of lymphatic systems, we are also going to determine the contributions of mesenteric lymph transport versus thoracic lymph transport of tegafur reported in reference(13). In comparison with tegafur solution, AUC and mean residence time of plasma tegafur were significantly increased in W/O emulsion but significantly decreased in O/W emulsion. Lymph flow rates were similar in both solution and W/O emulsion but half in O/W emulsion. AUC of tegafur in mesenteric lymph and in plasma for W/O emulsion were 3.7 times and 2.9 times more than those for O/W emulsion, respectively. And AUC of 5-FU in thoracic lymph for W/O emulsion was 3.7 times more than that for O/W emulsion. These results suggested that lymphatic delivery or tegafur by W/O emulsion was more effective than that by on emulsion due to its differences or formation ability of chylomicrons.

  • PDF

Spark-induced Breakdown Spectroscopy System of Bulk Minerals Aimed at Planetary Analysis (스파크 유도 플라즈마 분광 시스템을 이용한 우주탐사용 암석 분석연구)

  • Jung, Jaehun;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.1013-1020
    • /
    • 2020
  • Spark-induced breakdown spectroscopy (SIBS) utilizes an electric spark to induce a strong plasma for collecting atomic emissions. This study analyses the potential for usinga compact SIBS instead of conventional laser-induced breakdown spectroscopy (LIBS) in discriminating rocks and soils for planetary missions. Targeting bulky solids using SIBS has not been successful in the past, and therefore a series of optimizations of electrode positioning and electrode materials were performed in this work. The limit of detection (LOD) was enhanced up to four times compared to when LIBS was used, showing a change from 78 to 20 ppm from LIBS to SIBS. Because of the higher energy of plasma generated, the signal intensity by SIBS was higher than LIBS in three orders of magnitude with the same spectrometer setup. Changing the electrode material and locating the optimum position of the electrodes were considered for optimizing the current SIBS setup being tested for samples of planetary origin.