• 제목/요약/키워드: Plasma surface

검색결과 3,419건 처리시간 0.033초

PLASMA-SULFNITRIDING USING HOLLOW CATHODE DISCHARGE

  • Urao, Ryoichi;Hong, Sung-pill
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.443-448
    • /
    • 1996
  • In order to plasma-sulfnitride by combining ion-nitriding of a steel and sputtering of MoS$_2$, chromium-molybdenum steel was plasma-sulfritrided using hollow cathode discharge with parallel electrodes which are a main of the steel and a subsidiary cathode of $MoS_2$. The treatment was carried out at 823K for 10.8ks under 665Pa in a 30% $N_2$-70% $H_2$ gas atmosphere. Plasma-sulfnitriding layers formed of the steel were characterized with EDX, XRD, micrographic structure observation and hardness measurement. A compound layer of 8-15$\mu\textrm{m}$ and nitrogen diffusion layer of about 400$\mu\textrm{m}$ were formed on the surface of plasma-sulfnitrided steel. The compound layer consisted of FeS containing Mo and iron nitrides. The nitrides of $\varepsilon$-$Fe_2_3N$ and $\gamma$'-$Fe_4N$ formed under the FeS. The thickness of compound layer and surface hardness were different with the gaps between main and subsidiary cathodes even in the same sulfnitriding temperature. The surface hardnesses after plasma-sulfnitriding were distributed from 640 to 830Hv. The surface hardness was higher in the plasma-sulfnitriding than the usual sulfnitriding in molten salt. This may be due to Mo in sulfnitriding layer.

  • PDF

유리섬유/에폭시 복합절연재료의 계면 접착력 개선에 관한 연구(2) - 절연특성 향상에 관하여 - (A Study on the Adhesive Improvement of Glass cloth/Epoxy Composite Insulating Materials(2) - For Improvement of Wettability on the Interface -)

  • 김순태;황영한;박홍태;엄무수;이규철;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1061-1065
    • /
    • 1995
  • To improve dielectric and mechanical properties of insulating composite by plasma surface treatment, new plasma surface treatment process is designed with concentric and hemi-circle electrodes system, the plasma, which is generated between anode and cathode, is induced to the upper side of the electrode system and treats the surface of the insulators. The optimal surface treatment condition is that pressure : 0.5[torr], flux density 100[gauss], discharge current : 500[mA] and treatment time : 3 minutes. The composite filled with glass cloth surface-treated by plasma shows the improvement in electric and mechanical properties, comparing non- and coupling agent-treated samples.

  • PDF

유리섬유/에폭시 복합절연재료의 계면 접착력 개선에 관한 연구 2

  • 김순태;황영한;박홍태;엄무수;이규철;이종호
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권4호
    • /
    • pp.434-442
    • /
    • 1995
  • To improve dielectric and mechanical properties of insulating composite by plasma surface treatment, new plasma surface treatment process is designed with concentric and hemi-circle electrodes system. the plasma, which is generated between anode and cathode, is induced to the upper side of the electrode system and treats the surface of the insulators. The optimal surface treatment condition is that pressure : 0.5[torr], flux density : 100[gauss], discharge current : 500[mA] and treatment time : 3 minutes. The composite filled with glass cloth surface-treated by plasma shows the improvement in electric and mechanical properties, comparing non- and coupling agent treated samples.

  • PDF

크롬/폴리이미드의 접착력에 미치는 폴리이미드 표면의 플라즈마 처리의 효과 (The effects of plasma treatment of polyimide surface on the adhesion of chromium/polyimide)

  • 정태경;김영호;유진
    • 한국표면공학회지
    • /
    • 제26권2호
    • /
    • pp.71-81
    • /
    • 1993
  • Thed effects of Ar or Oxygen RF plasma treatment on the adhesion behavior of Cr films to polyimide sub-strates have been investigated by using SEM, XRD, AES, and $90^{\circ}$peel test. By applying RF plasma treatment of the polyimide surface prior to metal deposition, the peel adhesion strength of Cu/Cr films sputtered onto the fully cured BPDA-PDA polyimide was highly increased from about 3g/mm to 90 ~ 100g/mm. Improved peel adhesion strength of Cr/polyimide interfaces due to RF plasma treatment was attributed to the contributions from surface cleaning, Cr-polyimide bonding at the interface, and force required for plastic deformation of the film. While the surface topology change of the polyimide caused by RF plasma treatment makes a little contri-bution to the improved adhesion.

  • PDF

Ion Flux Assisted PECVD of SiON Films Using Plasma Parameters and Their Characterization of High Rate Deposition and Barrier Properties

  • Lee, Joon-S.;Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.236-236
    • /
    • 2011
  • Silicon oxynitride (SiON) was deposited for gas barrier film on polyethylene terephthalate (PET) using octamethylycyclodisiloxane (Si4O4C8H24, OMCTS) precursor by plasma enhanced chemical vapor deposition (PECVD) at low temperature. The ion flux and substrate temperature were measured by oscilloscope and thermometer. The chemical bonding structure and barrier property of films were characterized by Fourier transform infrared (FT-IR) spectroscopy and the water vapor transmission rate (WVTR), respectively. The deposition rate of films increases with RF bias and nitrogen dilution due to increase of dissociated precursor and nitrogen ion incident to the substrate. In addition, we confirmed that the increase of nitrogen dilution and RF bias reduced WVTR of films. Because, on the basis of FT-IR analysis, the increase of the nitrogen gas flow rate and RF bias caused the increase of the C=N stretching vibration resulting in the decrease of macro and nano defects.

  • PDF

서스펜션 진공 플라즈마 용사법을 통한 YSZ 코팅의 형성 (Formation of YSZ Coatings Deposited by Suspension Vacuum Plasma Spraying)

  • 유연우;변응선
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.460-464
    • /
    • 2017
  • As increasing thermal efficiency of the gas turbine, the performance improvement of thermal barrier coatings is also becoming important. Ytrria stabilized zirconia(YSZ) is the most popular materials for ceramic top coating because of its low thermal conductivity. In order to enhance the performance of thermal barrier coatings for hot sections in the gas turbine, suspension plasma spraying was developed in order to feed nano-sized powders. YSZ coatings formed by suspension plasma spraying showed better performance than YSZ coatings due to its exclusive microstructure. In this research, two YSZ coatings were deposited by suspension vacuum plasma spraying at 400 mbar and 250 mbar. Microstructures of YSZ coatings were analyzed by scanning electron image(SEM) on each spraying conditions, respectively. Crystalline structure transformation was not detected by X-ray diffraction. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings were measured by laser flash analysis. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings containing horizontally oriented nano-sized pores and vertical cracks showed $0.6-1.0W/m{\cdot}K$, similar to thermal conductivity of YSZ coatings formed by atmospheric plasma spraying.

Plasma Resistance and Etch Mechanism of High Purity SiC under Fluorocarbon Plasma

  • Jang, Mi-Ran;Paek, Yeong-Kyeun;Lee, Sung-Min
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.328-332
    • /
    • 2012
  • Etch rates of Si and high purity SiC have been compared for various fluorocarbon plasmas. The relative plasma resistance of SiC, which is defined as the etch rate ratio of Si to SiC, varied between 1.4 and 4.1, showing generally higher plasma resistance of SiC. High resolution X-ray photoelectron analysis revealed that etched SiC has a surface carbon content higher than that of etched Si, resulting in a thicker fluorocarbon polymer layer on the SiC surface. The plasma resistance of SiC was correlated with this thick fluorocarbon polymer layer, which reduced the reaction probability of fluorine-containing species in the plasma with silicon from the SiC substrate. The remnant carbon after the removal of Si as volatile etch products augments the surface carbon, and seems to be the origin of the higher plasma resistance of SiC.

플라즈마 처리된 실리콘 절연재의 표면 특성화 (Surface Charcterization of plasma-treated silicone insulating materials)

  • 송정용;허창수;연복희;이태호;유형철;서유진;이기택;김남렬;이운하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.176-178
    • /
    • 2002
  • Surface states of silicone polymer treated by plasma were investigated by the analysis by x-ray photoelectron spectroscopy(XPS) and surface voltage decay after corona charging. Plasma treatment causes the silica -like oxidative layer, which was confirmed with XPS, and lowers surface resistivity with increasing the plasma treatment time. Using the decay time constant of surface voltage, the calculated surface resistivity was compared with the value directly measured by voltage-current method using three electrodes system. A good agreement between two methods was obtained. In addition, we estimated the thermal activation energy for surface conduction, Based on our results, we could understand the relationship between surface chemical states and surface electrical properties.

  • PDF

Characterization of Plasma with Heating Treatment of ITO on the Efficiency of Polymer Solar Cells

  • Kim, Jung-Woo;Kim, Nam-Hun;Kim, Hyoung-Sub;Jung, Dong-Geun;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.301-301
    • /
    • 2010
  • In order to enhance the efficiency of the organic solar cells, the effects of plasma surface treatment with using $CF_4$ and $O_2$ gas on the anode ITO were studied. The polymer solar cell devices were fabricated on ITO glasses an active layer of P3HT (poly-3-hexylthiophene) and PCBM ([6,6]-phenyl C61-butyric acid methyl ester) mixture, without anode buffer layer, such as PEDOT:PSS layer. The metallic electrode was formed by thermally evaporated Al. Before the coating of organic layers, ITO surface was exposed to plasma made of $CF_4$ and $O_2$ gas, with/without heat treatment. In order to identify the effect the surface treatment, the current density and voltage characteristics were measured by solar simulator and the chemical composition of plasma treated ITO surface was analyzed by using X-ray photoelectron spectroscopy(XPS). In addition, the work function of the plasma treated ITO surface was measured by using ultraviolet photoelectron spectroscopy(UPS). The effects of plasma surface treatment can be attributed to the removal organic contaminants of the ITO surface, to the improvement of contact between ITO and buffer layer, and to the increase of work function of the ITO.

  • PDF

AISI 316L stainless steel에 저온 플라즈마 침탄처리 후 질화처리 시 처리시간과 온도가 표면특성에 미치는 영향 (Effects of Processing Time and Temperature on the Surface Properties of AISI 316L Stainless steel During Low Temperature Plasma Nitriding After Low Temperature Plasma Carburizing)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.357-362
    • /
    • 2008
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The effects of processing time and temperature on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ was increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness reached up to $1,200HV_{0.1}$ which is about 5 times higher than that of untreated sample ($250HV_{0.1}$). The thickness of ${\gamma}_N$ and concentration of N on the surface were increased with increasing processing time and temperature. The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was enhanced more than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.