• Title/Summary/Keyword: Plasma shape

Search Result 335, Processing Time 0.029 seconds

Increase in Color Depth and Analysis of the Interfacial Electrokinetic Potential of Poly(Ethylene Terephthalate) Fabric by Plasma Treatment (폴리에스테르 직물의 저온플라즈마 처리에 따른 계면동전위와 심색성 향상에 관한 연구)

  • Jeon, Sang-Min;Lee, Ki-Poong;Gu, Kang
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • We investigated the effect of color depth on polyester fabrics by plasma treatment. In this study, although it have many paper about effects of plasma treatment, we observed interfacial electrokinetic potential of polyester fabrics by plasma treatment and also we investigated relationship between deep coloring agent and plasma treatment to get the effect of color depth on polyester fabrics. The results obtained are as follows, 1. Plasma treatment did not enhanced the effect of color depth of polyester fabrics by plasma treatment independently. 2. In the case of using the deep coloring agent with plasma treatment on polyester fabrics, lightness was more decreased than using the deep coloring agent itself. 3. Plasma treatment could not affect surface shape and tensile strength of treated polyester fabrics.

A Three-Dimensional Calculation of the Reactor Impedance for Planar-Type Cylindrical Inductively Coupled Plasma Sources

  • Kwon, Deuk-Chul;Yoon, Nam-Sik
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.237-241
    • /
    • 2015
  • The reactor impedance is calculated for a planar-type cylindrical inductively coupled plasma source by expanding the electromagnetic fields into their Fourier-Bessel series forms including the three-dimensional shape of the antenna. The mode excitation method is utilized to determine the electromagnetic fields based on a Poynting theorem-like relationship. From the obtained electromagnetic fields, a tractable form of the reactor impedance is obtained as a function of various plasma and geometrical parameters and applied to carry out a parametric study.

Estimation of $CO_2$ Laser Weld Bead by Using Multiple Regression (다중회귀분석을 이용한 $CO_2$레이저 용접 비드 예측)

  • 박현성;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.26-35
    • /
    • 1999
  • On the laser weld production line, a slight alteration of the welding condition changes the bead size and the strength of the weldment. The measurement system is produced by using three photo-diodes for detection of the plasma and spatter signal in $CO_2$ laser welding. The relationship between the sensor signals of plasma or spatter and the bead shape, and the mechanism of the plasma and spatter were analyzed for the bead size estimation. The penetration depth and the bead width were estimated using the multiple regression analysis.

  • PDF

Fabrication of Agglomerated Cr$_2$O$_3$ Powder for Plasma Spray Coating by Spray Drying Process (분무 건조법에 의한 프라즈마 용사를 Cr$_2$O$_3$조립 분말 제조)

  • 이동원
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.28-34
    • /
    • 1998
  • Plasma sprayed ceramic coatings are widely used in various industrial fields to improve their properties or to reduce the production cost. The ceramic powders for plasma spray coating have been mainly manufactured by spray drying or fused+crushed process. In this study, chromium oxide which has better mechanical properties than those of the other ceramic was selected and agglomerated chromium oxide powders for plasma spray coating were produced by spray drying process with a various processing condition. The large hollow powders and the harsh surfaced powders are formed at high slurry feed rate more than 163 g/min. and low binder concentration less than 2wt%, respectively. These powders cause the considerable decrease of flowability and apparent density. The powders produced by spray drying process have the spherical shape with the mean size of 45 ${\mu}m$, but these are shown lower apparent density and flowability than the powders produced by fused+crushed powders. The plasma spray coated layers by spray dried powders are shown a different microstructure with that by fused+crushed powders in porosity shape, but their properties such as density, hardness and bond strength are similar.

  • PDF

Manufacturing of Cu-Zn-Al shape memory alloy using spark plasma sintering (SPS법을 이용한 CuZnAl계 형상기억합금의 제조)

  • 박노진;이인성;조경식;김성진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.172-177
    • /
    • 2002
  • The CuZnAl alloys have some advantages against other shape memory alloys, such as the widely variable transformation temperature, the low cost and easy fabrication. The alloys have been produced mostly by metallurgical methods. Thereby a tendency to large grain sizes is observed, which causes brittle properties of the materials. In order to avoid these deficiencies a special powder metallurgical process, SPS(spark plasma sintering), is applied in the present investigation. The starting materials were the pure (99.9 %) Cu, Zn and Al element powders with different particle size. The relatively fine grained and homogeneous Cu-24.78Zn-9.11Al (at.%) and Cu-13.22Zn-17.24Al (at.%) shape memory alloys were obtained using the powders with size of 75-150 $\mu$m. The average grain size is about 70 $\mu$m and the phases at room temperature are the austenitic and martensitic phase respectively.

Measurement of Monodisperse Particle Charging in Unmagnetized and Magnetized Plasmas (자화된 플라즈마 내에서의 단분산 입자의 하전량 특정)

  • 한장식;안강호;김곤호
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.35-40
    • /
    • 2002
  • Understanding of charging properties of a small particle is necessary to control the particle contamination and to improve productivity of the electronic device in the plasma aided semiconductor manufacturing processes. In this study, the effects of both magnetic field and particle size on the charging properties are experimentally investigated in collisional dusty plasmas. The experiments carried out in the system consisted of a monodisperse particle generation system, a DC magnetized plasma generation system and a charge measurement system. The plasma chamber is made of cross-shape Pyrex surrounded by magnetic bucket (composed of 12 permanent magnetic bar) to confine the plasma. DC magnetic field up to 250G are applied to the plasma zone by external magnetic coil. Previous work shows the charging effect clearly increase with increasing the size of the particle and plasma density, as it was expected.

  • PDF

A Study of Seam Tracking and Error Compensation for Plasma Arc Welding of Corrugation Panel

  • Yang, Joo-Woong;Park, Young-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2701-2706
    • /
    • 2003
  • This paper describes weld seam tracking and error compensation methods of automatic plasma arc welding system designed for the corrugation panel that consists of a linear section and a curved section with various curvatures. Realizing automatic welding system, we are faced with two problems. One is a precise seam tracking and the other is an arc length control. Due to the complexity of the panel shape, it is difficult to find a seam and operate a torch manually in the welding process. So, laser vision sensor for seam tracking is equipped for sensing the seam position and controlling the height of a torch automatically. To attain more precise measurement of an arc length, we measure the 3D shape of the panel and analyze error factors according to the various panel states and caused errors are predicted through the welding process. Using that result, compensation algorithm is added to that of arc length control and real time error compensation is achieved. The result shows that these two methods work effectively.

  • PDF

Effect of Charging on Particle Collection during Synthesis of Nanoparticles by Pulse Plasma (펄스 플라즈마에 의한 나노입자 제조 시 하전이 입자의 포집에 미치는 영향)

  • Kim, Kwang-Su;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.210-214
    • /
    • 2007
  • Silicon nanoparticles are widely studied as a material with great potential for wide applications. For application to present industry, it should be easy to control the characteristics of nanoparticle including the size and structure. In this paper, we investigated the formation of Si nanoparticle using pulse plasma technology. Plasma technology is already quite common in device industry and the size of nanoparticle can be easily controlled according to plasma pulse duration. An inductively-coupled plasma chamber with RF power (13.56 MHz) was used with DC-biased grid $(-200\sim+200\;V)$ installed above the substrate. In order to measure the shape and size of nanoparticle, TEM was used. It was found that the size of nanoparticles can be controlled well with the plasma pulse duration and the collection efficiency is increased with the use of either negative or positive DC-bias.

  • PDF

A Study on the Enhancement of Emission Efficiency of an Organic EL Devices Using the RF Plasma (RF 플라즈마를 이용한 유기 EL소자의 발광 효율에 관한 연구)

  • 박상무;김형권;신백균;임경범;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.400-406
    • /
    • 2003
  • Efficient electrodes are devised for organic luminescent device(OLED). ITO electrode is treated with $O_2$ plasma. In order to inject hole efficiently, there is proposed the shape of anode that inserted plasma polymerized films as buffer layer between anode and organic layer using thiophene monomer. In the case of device inserted the buffer layer by using the plasma polymerization after $O_2$ plasma processing for ITO transparent electrode, since it forms the stable interface and reduce the moving speed of hole, the recombination of hole and electronic are made in the emitting layer. Therefore it realized the device capability of two times in the aspect of luminous efficiency than the device which do not be inserted the buffer layer. Experiments are limited to the device that has the structure of TPD/$AIq_3$, however, the aforementioned electrodes can similarly applied to the organic luminous device and the Polymer luminous device.

A Study on the Electrode formation of an Organic EL Devices using the RF Plasma (RF 플라즈마를 이용한 유기 EL 소자의 전극형성에 관한 연구)

  • 이은학
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.228-235
    • /
    • 2004
  • In this thesis, it is designed efficient electrode formation on the organic luminescent device. ITO electrode is treated with $O_2$plasma. In order to inject hole efficiently, there is proposed the shape of anode that inserted plasma polymerized films as buffer layer between anode and organic layer using thiophene monomer. It is realized efficiently electron injection to aluminum due to introduce the quantum well in cathode. In the case of device inserted the buffer layer by using the plasma poiymerization after $O_2$plasma processing for ITO transparent electrode, since it forms the stable interface and reduce the moving speed of hole, the recombination of hole and electronic ate made in the omitting layer. Compared with the devices without buffer layer, the turn-on voltage was lowered by 1.0(V) doc to the introduction of buffer layer Since the quantum well structure is formed in front of cathode to optimize the tunneling effect, there is improved the power efficiency more than two times.