• 제목/요약/키워드: Plasma shape

검색결과 335건 처리시간 0.041초

직류 방전과 펄스 직류 방전에 의한 플라즈마 형상 관찰 (Observation of Plasma Shape by Continuous dc and Pulsed dc)

  • 양원균;주정훈
    • 한국표면공학회지
    • /
    • 제42권3호
    • /
    • pp.133-138
    • /
    • 2009
  • Effects of bipolar pulse driving frequency between 50 kHz and 250 kHz on the discharge shapes were analyzed by measuring plasma characteristics by OES (Optical Emission Spectroscopy) and Langmuir probe. Plasma characteristics were modeled by a simple electric field analysis and fluid plasma modeling. Discharge shapes by a continuous dc and bipolar pulsed dc were different as a dome-type and a vertical column-type at the cathode. From OES, the intensity of 811.5 nm wavelength, the one of the main peaks of Ar, decreased to about 43% from a continuous dc to 100 kHz. For increasing from 100 kHz to 250 kHz, the intensity of 811.5 nm wavelength also decreased by 46%. The electron density decreased by 74% and the electron temperature increased by 36% at the specific position due to the smaller and denser discharge shape for increasing pulse frequency. Through the numerical analysis, the negative glow shape of a continuous dc were similar to the electric potential distribution by FEM (Finite Element Method). For the bipolar pulsed dc, we found that the electron temperature increased to maximum 10 eV due to the voltage spikes by the fast electron acceleration generated in pre-sheath. This may induce the electrons and ions from plasma to increase the energetic substrate bombardment for the dense thin film growth.

STUDY OF FLARE-ASSOCIATED X-RAY PLASMA EJECTIONS : II. MORPHOLOGICAL CLASSIFICATION

  • KIM YEON-HAN;MOON Y.-J.;CHO K.-S.;BONG SU-CHAN;PARK Y.-D.
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.171-177
    • /
    • 2004
  • X-ray plasma ejections often occurred around the impulsive phases of solar flares and have been well observed by the SXT aboard Yohkoh. Though the X-ray plasma ejections show various morphological shapes, there has been no attempt at classifying the morphological groups for a large sample of the X-ray plasma ejections. In this study, we have classified 137 X-ray plasma ejections according to their shape for the first time. Our classification criteria are as follows: (1) a loop type shows ejecting plasma with the shape of loops, (2) a spray type has a continuous stream of plasma without showing any typical shape, (3) a jet type shows collimated motions of plasma, (4) a confined ejection shows limited motions of plasma near a flaring site. As a result, we classified the flare-associated X-ray plasma ejections into five groups as follows: loop-type (60 events), spray-type (40 events), jet-type (11 events), confined ejection (18 events), and others (8 events). As an illustration, we presented time sequence images of several typical events to discuss their morphological characteristics, speed, CME association, and magnetic field configuration. We found that the jet-type events tend to have higher speeds and better association with CMEs than those of the loop-type events. It is also found that the CME association (11/11) of the jet-type events is much higher than that (5/18) of the confined ejections. These facts imply that the physical characteristics of the X-ray plasma ejections are closely associated with magnetic field configurations near the reconnection regions.

고밀도 식각 플라즈마에서 비정질 탄소 하드 마스크의 형상 변형 해석을 위한 다각형 모델 개발 (Development of Polygonal Model for Shape-Deformation Analysis of Amorphous Carbon Hard Mask in High-Density Etching Plasma)

  • 송재민;배남재;박지훈;유상원;권지원;박태준;이인규;김대철;김종식;김곤호
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.53-58
    • /
    • 2022
  • Shape changes of hard mask play a key role in the aspect ratio dependent etch (ARDE). For etch process using high density and energy ions, deformation of hard mask shape becomes more severe, and high aspect ratio (HAR) etch profile is distorted. In this study, polygonal geometric model for shape-deformation of amorphous carbon layered hard mask is suggested to control etch profile during the process. Mask shape is modeled with polygonal geometry consisting of trapezoids and rectangles, and it provides dynamic information about angles of facets and etched width and height of remained mask shape, providing important features for real-time HAR etch profiling.

Analysis of Biological Effect of DBD-type Non-thermal Atmospheric Pressure Plasma on Saccharomyces Cerevisiae

  • Park, Gyung-Soon;Baik, Ku-Yeon;Kim, Jung-Gil;Kim, Yun-Jung;Lee, Kyung-Ae;Choi, Eun-Ha;Uhm, Hwan-Sup;Jung, Ran-Ju;Cho, Kwang-Sup
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.337-337
    • /
    • 2011
  • Application of plasma technology on microbial sterilization has been frequently studied. In spite of accumulating number of studies, many have been focused on bacteria. Reports on eukaryotic yeasts and filamentous fungi are limited. In addition, mechanism of plasma effect still needs to be clarified. In this study, we analyzed the effect of non-thermal atmospheric pressure plasma on the budding yeast, Saccharomyces cerevisiae using DBD-type device. When yeast cells were exposed to plasma (at 2 mm distance) and then cultured on YPD-agar plate, number of cells survived (shown as colony) were reduced proportionally to exposure time. More than 50% reduction in number of colonies were observed after twice exposure of 5min. each. Colonies much smaller than those of control (no plasma exposure) were appeared after twice exposure of 5 min. each. It seems that small colonies are resulted from delayed cell growth due to the damage caused by plasma treatment. Microscopic analysis demonstrates that yeast cells treated with plasma for 5 min. twice have more rough and shrinked shape compared to oval shape with smooth surface of control.

  • PDF

저온 플라즈마 처리에 의한 전자파 차폐성 금속화 합성섬유의 계면 밀착성 개선 (Improvement of Interfacial Adhesion of Metal Plated Synthetic Fabrics for Electromagnetic Wave Shielding by Using Cold Plasma)

  • 천태일
    • 한국염색가공학회지
    • /
    • 제10권2호
    • /
    • pp.8-17
    • /
    • 1998
  • In this study we have examined electroless chemical plating on the plasma grafted poly [ethylene terephathalate](PET) fabric in order to improve the interfacial adhesion between metal and fiber. The vapour phase of acrylic acid introduced on the PET surface and the graft polymerization was carried out by using cold plasma, resulting in the grafting yield of 0.8-1.3 wt%. The carboxyl group of the plasma grafted was identified by FT-IR-ATR spectra. The Interfacial adhesion was related to the carboxyl group. After electroless chemical plating of nickel, it showed that the more the carboxyl, the better the interfacial adhesion. Comparing to the untreated, the plasma grafted fabric showed fairly good interfacial adhesion(5B grade, ASTM D3359) . The shielding effect of electromagnetic wave showed 95dB. The shielding effect depends on the fabric structure, the surface structure, and the cross sectional shape of fibers. The dense fabric structure, the etched surface like a microcrater, and the trigonal cross sectional shape were prefered.

  • PDF

Ceramic Materials Selection of Fuel Crucibles based on Plasma Spray Coating for SFR

  • Song, Hoon;Kim, Jong-Hwan;Kim, Hyung-Tae;Ko, Young-Mo;Woo, Yoon-Myung;Oh, Seok-Jin;Kim, Ki-Hwan;Lee, Chan-Bock
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2012년도 추계학술논문요약집
    • /
    • pp.131-132
    • /
    • 2012
  • The vacuum plasma coating was performed to analysis the characteristic and find the optimum process conditions for the vacuum plasma spray coating. It was observed that the square shape of powder in case of carbide ceramics does not fluidize well compared to the round shape of powder in case of oxide ceramics so that the plasma spraying is not uniform. The analysis through SEM and EDS mapping shows that the coatings represent excellent structural features with strong resistance against oxidation and satisfied result with vacuum plasma coating.

  • PDF

플라즈마 질소 이온 주입한 초경공구의 고속가공시 공구마멸 특성 (Tool Wear Characteristics of Tungsten Carbide Implanted with Plasma Source Nitrogen Ions in High-speed Machining)

  • 박성호;왕덕현
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.34-39
    • /
    • 2022
  • The ion implantation technology changes the chemical state of the surface of a material by implanting ions on the surface. It improves the wear resistance, friction characteristics, etc. Plasma ion implantation can effectively reinforce a surface by implanting a sufficient amount of plasma nitrogen ions and using the injection depth instead of an ion beam. As plasma ion implantation is a three-dimensional process, it can be applied even when the surface area is large and the surface shape is complicated. Furthermore, it is less expensive than competing PVD and CVD technologies. and the material is The accommodation range for the shape and size of the plasma is extremely large. In this study, we improved wear resistance by implanting plasma nitrogen ions into a carbide end mill tool, which is frequently used in high-speed machining

Research to Achieve Uniform Plasma in Multi-ground Capacitive Coupled Plasma

  • 박기정;이윤성;유대호;이진원;이정범;장홍영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.247.1-247.1
    • /
    • 2014
  • The capacitive coupled plasma is used widely in the semiconductor industries. Especially, the uniformity of the industrial plasma is heavily related with defect ratio of devices. Therefore, the industries need the capacitive coupled plasma source which can generate the uniform plasma and control the plasma's uniformity. To achieving the uniformity of the large area plasma, we designed multi-powered electrodes. We controlled the uniformity by controlling the power of each electrode. After this work, we started to research another concept of the plasma device. We make the plasma chamber that has multi-ground electrodes imaginary (CST microwave studio) and simulate the electric field. The shape of the multi-ground electrodes is ring type, and it is same as the shape of the multi-power electrodes that we researched before. The diameter of the side electrode's edge is 300mm. We assumed that the plasma uniformity is related with the impedance of ground electrodes. Therefore we simulated the imaginary chamber in three cases. First, we connected L (inductor) and C (capacitor) at the center of multi-ground electrodes. Second, we changed electric conductivity of multi-ground electrode. Third, we changed the insulator's thickness between the center ground electrode and the side ground electrode. The driving frequency is 2, 13.56 and 100 MHz. We switched our multi-powered electrode system to multi-ground electrode system. After switching, we measured the plasma uniformity after installing a variable vacuum capacitor at the ground line. We investigate the effect of ground electrodes' impedance to plasma uniformity.

  • PDF

수처리용 유전체장벽 플라즈마 반응기에 대한 기초 연구 (A Basic Study of Plasma Reactor of Dielectric Barrier Discharge for the Water Treatment)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제20권5호
    • /
    • pp.623-630
    • /
    • 2011
  • This study investigated the degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) by using dielectric barrier discharge (DBD) plasma. The DBD plasma reactor of this study consisted of a quartz dielectric tube, titanium discharge (inner) and ground (outer) electrode. The effect of shape (rod, spring and pipe) of ground electrode, diameter (9~30 mm) of ground electrode of spring shape and inside diameter (4~13 mm) of quartz tube, electrode diameter (1~4 mm), electrode materials (SUS, Ti, iron, Cu and W), height difference of discharge and ground electrode (1~15.5 cm) and gas flow rate (1~7 L/min) were evaluated. The experimental results showed that shape of ground electrode and materials of ground and discharge electrode were not influenced the RNO degradation. The thinner the diameter of discharge and ground electrode, the higher RNO degradation rate observed. The effect of height gap of discharge between ground electrode on RNO degradation was not high within the experimented value. Among the experimented parameters, inside diameter of quartz tube and gas flow rate were most important parameters which are influenced the decomposition of RNO. Optimum inside diameter of quartz tube and gas flow rate were 7 mm and 4 L/min, respectively.

Spark Plasma Sintering을 이용한 Cu-26.7Zn-4.05Al(wt.%) 형상기억합금의 제조 (Manufacturing of Cu-26.7Zn-4.05Al(wt.%) Shape Memory Alloy Using Spark Plasma Sintering)

  • 박노진;이인성;조경식;김성진
    • 한국재료학회지
    • /
    • 제13권6호
    • /
    • pp.352-359
    • /
    • 2003
  • In order to control the grain size, the spark plasma sintering technique is applied for the manufacturing of Cu-26.7Al-4.05AI(wt.%) shape memory alloy with pure Cu, Zn, and Al element powders. The sintering processes were carried out under different atmospheres. The sintered bodies were denser under Ar or Ar+4%$H_2$gas atmosphere than under vacuum. With use of small-sized powders, a very small average grain size of 2∼3 $\mu\textrm{m}$ was obtained, but the single phase was not formed. With the large-sized powders the single austenitic phase was observed with the average grain size of $70∼72\mu\textrm{m}$. When the different size of raw powders was mixed, it is confirmed that the average grain size of the manufactured alloys was 15 $\mu\textrm{m}$ with single austenitic phase, but the distribution of grain size was not uniform.