• Title/Summary/Keyword: Plasma membrane

Search Result 880, Processing Time 0.026 seconds

Fabrication and Vibration Characterization of a Partially Etched-type Artificial Basilar Membrane

  • Kang, Hanmi;Jung, Youngdo;Kwak, Jun-Hyuk;Song, Kyungjun;Kong, Seong Ho;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.373-378
    • /
    • 2015
  • The structure of the human ear is divided into the outer ear, the middle ear, and the inner ear. The inner ear includes the cochlea that plays a very important role in hearing. Recently, the development of an artificial cochlear device for the hearing impaired with cochlear damage has been actively researched. Research has been carried out on the biomimetic piezoelectric thin film ABM (Artificial Basilar Membrane) in particular. In an effort to improve the frequency separation performance of the existing piezoelectric thin film ABM, this paper presents the design, fabrication, and characterization of the production and performance of a partially etched-type ABM material. $O_2$ plasma etching equipment was used to partially etch a piezoelectric thin film ABM to make it more flexible. The mechanical-behavior characterization of the manufactured partially etched-type ABM showed that the overall separation frequency range shifted to a lower frequency range more suitable for audible frequency bandwidths and it displayed an improved frequency separation performance. In addition, the maximum magnitude of the vibration displacement at the first local resonant frequency was enhanced by three times from 38 nm to 112 nm. It is expected that the newly designed, partially etched-type ABM will improve the issue of cross-talk between nearby electrodes and that the manufactured partially etched-type ABM will be utilized for next-generation ABM research.

Effect of Optixcell and Triladyl extenders on frozen-thawed sperm motilities and calving rates following artificial insemination in Hanwoo

  • Kang, Sung-Sik;Lee, Myung-Suk;Kim, Ui-Hyung;Lee, Seok-Dong;Yang, Byoung-Chul;Yang, Boh-Suk;Cho, Sang-Rae
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.195-204
    • /
    • 2019
  • In this study, we examined the effect of a liposome-based extender (Optixcell) and a tris-citric egg-yolk extender (Triladyl) on the frozen-thawed spermatozoa characteristics and the calving rate. The percentages for the total motility of the frozen-thawed spermatozoa were similar in the Optixcell and Triladyl groups. However, among the motile spermatozoa with a straight line velocity (VSL) ${\geq}25{\mu}m/sec$, the curvilinear velocity (VCL, ${\mu}m/sec$), VSL (${\mu}m/sec$), average path velocity (VAP, ${\mu}m/sec$), amplitude of lateral head displacement (ALH, ${\mu}m$), beat cross frequency (BCF, Hz), and plasma membrane integrity of the frozen-thawed spermatozoa for the Optixcell group were significantly higher than those for the Triladyl group. Furthermore, the calving rate in the Optixcell group (79.0%) was higher than that of the Triladyl group (62.8%). However, the acrosomal membrane integrity of the frozen-thawed spermatozoa in the Optixcell and Triladyl groups was not significantly different. These results indicate that semen freezing with Optixcell improved the motility and plasma membrane integrity of frozen-thawed spermatozoa and the calving rate of Hanwoo cows (native Korean cattle). In conclusion, our results suggest that semen freezing with the liposome-based extender Optixcell is more efficient than with the tris-citric egg-yolk extender Triladyl for improved offspring production.

Ethanol inhibits Kv7.2/7.3 channel open probability by reducing the PI(4,5)P2 sensitivity of Kv7.2 subunit

  • Kim, Kwon-Woo;Suh, Byung-Chang
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.311-316
    • /
    • 2021
  • Ethanol often causes critical health problems by altering the neuronal activities of the central and peripheral nerve systems. One of the cellular targets of ethanol is the plasma membrane proteins including ion channels and receptors. Recently, we reported that ethanol elevates membrane excitability in sympathetic neurons by inhibiting Kv7.2/7.3 channels in a cell type-specific manner. Even though our studies revealed that the inhibitory effects of ethanol on the Kv7.2/7.3 channel was diminished by the increase of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the molecular mechanism of ethanol on Kv7.2/7.3 channel inhibition remains unclear. By investigating the kinetics of Kv7.2/7.3 current in high K+ solution, we found that ethanol inhibited Kv7.2/7.3 channels through a mechanism distinct from that of tetraethylammonium (TEA) which enters into the pore and blocks the gate of the channels. Using a non-stationary noise analysis (NSNA), we demonstrated that the inhibitory effect of ethanol is the result of reduction of open probability (PO) of the Kv7.2/7.3 channel, but not of a single channel current (i) or channel number (N). Finally, ethanol selectively facilitated the kinetics of Kv7.2 current suppression by voltage-sensing phosphatase (VSP)-induced PI(4,5)P2 depletion, while it slowed down Kv7.2 current recovery from the VSP-induced inhibition. Together our results suggest that ethanol regulates neuronal activity through the reduction of open probability and PI(4,5)P2 sensitivity of Kv7.2/7.3 channels.

Antioxidant activity and metabolic regulation of sodium salicylate on goat sperm at low temperature

  • Wenzheng Shen;Yu Fu;Haiyu Bai;Zhiyu Zhang;Zhikun Cao;Zibo Liu;Chao Yang;Shixin Sun;Lei Wang;Chunhuan Ren;Yinghui Ling;Zijun Zhang;Hongguo Cao
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.640-654
    • /
    • 2024
  • Objective: The purpose of this study was to explore the effect of sodium salicylate (SS) on semen preservation and metabolic regulation in goats. Methods: Under the condition of low temperature, SS was added to goat semen diluent to detect goat sperm motility, plasma membrane, acrosome, antioxidant capacity, mitochondrial membrane potential (MMP) and metabonomics. Results: The results show that at the 8th day of low-temperature storage, the sperm motility of the 20 μM SS group was 66.64%, and the integrity rates of the plasma membrane and acrosome were both above 60%, significantly higher than those of the other groups. The activities of catalase and superoxide dismutase in the sperm of the 20 μM SS group were significantly higher than those of the control group, the contents of reactive oxygen species and malondialdehyde were significantly lower than those in the control group, the MMP was significantly higher than that in the control group, and the contents of Ca2+ and total cholesterol were significantly higher than those in the control group. Through metabonomics analysis, there were significant metabolic differences between the control group and the 20 μM SS group. Twenty of the most significant metabolic markers were screened, mainly involving five metabolic pathways, of which nicotinic acid and nicotinamide metabolic pathways were the most significant. Conclusion: The results indicate that SS can effectively improve the low-temperature preservation quality of goat sperm.

Characteristics of HIV-Tat Protein Transduction Domain

  • Yoon Jong-Sub;Jung Yong-Tae;Hong Seong-Karp;Kim Sun-Hwa;Shin Min-Chul;Lee Dong-Gun;Shin Wan-Shik;Min Woo-Sung;Paik Soon-Young
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.328-335
    • /
    • 2004
  • The human immunodeficiency virus type 1 (HIV-I) Tat protein transduction domain (PTD), which con­tains rich arginine and lysine residues, is responsible for the highly efficient transduction of protein through the plasma membrane. In addition, it can be secreted from infected cells and has the ability to enter neighboring cells. When the PTD of Tat is fused to proteins and exogenously added to cells, the fusion protein can cross plasma membranes. Recent reports indicate that the endogenously expressed Tat fusion protein can demonstrate biodistribution of several proteins. However, intercellular transport and protein transduction have not been observed in some studies. Therefore, this study exam­ined the intercellular transport and protein transduction of the Tat protein. The results showed no evi­dence of intercellular transport (biodistribution) in a cell culture. Instead, the Tat fusion peptides were found to have a significant effect on the transduction and intercellular localization properties. This sug­gests that the HIV-1 PTD passes through the plasma membrane in one direction.

Hemolytic uremic syndrome (용혈성 요독 증후군)

  • Park, Hye Won
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.10
    • /
    • pp.931-937
    • /
    • 2007
  • The hemolytic uremic syndrome (HUS) is a rare disease of microangiopathic hemolytic anemia, low platelet count and renal impairment. HUS usually occurs in young children after hemorrhagic colitis by shigatoxin-producing enterohemorrhagic E. coli (D+HUS). HUS is the most common cause of acute renal failure in infants and young children, and is a substantial cause of acute mortality and morbidity; however, renal function recovers in most of them. About 10% of children with HUS do not reveal preceding diarrheal illness, and is referred to as D- HUS or atypical HUS. Atypical HUS comprises a heterogeneous group of thrombomicroangiopathy (TMA) triggered by non-enteric infection, virus, drug, malignancies, transplantation, and other underlying medical condition. Emerging data indicate dysregulation of alternative complement pathway in atypical HUS, and genetic analyses have identified mutations of several regulatory genes; i.e. the fluid phase complement regulator Factor H (CFH), the integral membrane regulator membrane cofactor protein (MCP; CD46) and the serine protease Factor I (IF). The uncontrolled activation of the complement alternative pathway results in the excessive consumption of C3. Plasma exchange or plasma infusion is recommended for treatment of, and has dropped the mortality rate. However, overall prognosis is poor, and many patients succumb to end-stage renal disease. Clinical presentations, response to plasma therapy, and outcome after renal transplantation are influenced by the genotype of the complement regulators. Thrombotic thrombocytopenic purpura (TTP), another type of TMA, occurs mainly in adults as an acquired disease accompanied by fever, neurologic deficits and renal abnormalities. However, less frequent cases of congenital or hereditary TTP associated with ADAMTS-13 (a disintegrin and metalloprotease, with thrombospondin 1-like domains 13) gene mutations have been reported, also. Recent advances in molecular genetics better allow various HUS to be distinguished on the basis of their pathogenesis. The genetic analysis of HUS is important in defining the underlying etiology, predicting the genotype-related outcome and optimizing the management of the patients.

Surface Properties of Liposomes Modified with Poly(ethylenimine) (폴리에틸렌이민으로 개질된 리포솜의 표면 특성)

  • 박윤정;남다은;서동환;한희동;김태우;김문석;신병철
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.502-508
    • /
    • 2004
  • Cationic liposomes for cancer treatment have been developed in the field of chemotharpy. It was well combined on the surface of anionic tumor cell membrane by electrostatic interaction. Thus, the object of this study was to prepare the cationic liposomes capable of forming an ionic complex with the anionic cell membrane. To prepare the cationic liposomes, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) as a cationic lipid material and polyethylenimine (PEI) as a cationic polymer were synthesized. Ionic property on the surface of liposomes was determined by the zeta potential. The adsorption characteristics of plasma protein for liposome in bovine serum were determined by the particle size and turbidity change. To estimate the stability of liposome in buffered solution, the change of particle size was measured at room temperature for seven days. The cationic liposomes were absorbed a large amount of plasma protein in bovine serum because plasma protein having anionic charge was fixed on the surface of cationic liposomes. This result indicate that the modification on the surface of liposomes using cationic polyethylenimine enhances the protein adsorption in bovine serum. Additionaly, cationic liposomes showed good stability in buffered solution for seven days.

Production of Angiotensin I Converting Enzyme Inhibitory Peptides from Bovine Blood Plasma Proteins (도축 폐혈액 단백질로부터의 Angiotensin I Converting Enzyme 저해 펩타이드의 생산)

  • Hyeon, Chang-Gi;Sin, Hyeon-Gil
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.600-605
    • /
    • 1999
  • For the production of angiotensin I converting enzyme inhibitory peptides as a material for antihypertensive functional foods from animal blood produced in slaughterhouse, the optimum condition for enzymatic hydrolysis to yield a peptide fraction of the highest activity were investigated with a respect of industrial production. Among several industrially-usable enzymes tested, $Alcalase^?$ produced hydrolysates of the highest activity from total plasma and purified albumin. $IC_50$ values of albumin hydrolysate and its third fraction separated by gel chromatography were 0.5 and 0.02 mg/mL, respectively. The fraction was found to be obtained by a simple ultrafiltration using a membrane of MW cutoff 1,000. The possibility for the industrial production of antihypertensive peptides from animal blood plasma protein was suggested.

  • PDF

Advanced Glycation End Products and Diabetic Complications

  • Singh, Varun Parkash;Bali, Anjana;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.

A Case of Plasma Cell Mucositis Arising From the Larynx (후두에 발생한 형질 세포 점막염 1예)

  • Lee, Chang Bae;Heo, Jae Won;Pak, Min Gyoung;Lee, Dong Kun
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.32 no.2
    • /
    • pp.98-103
    • /
    • 2021
  • Plasma cell mucositis is a very rare benign disease characterized by dense lymphoplasmacytic infiltration in the submucosa layer. It appears as a reddish ulcer on the mucous membrane or as a cobblestone or nodular mass on the affected mucosa. When it involves the pharynx or larynx, the patient presents with dysphagia, voice change and dyspnea. Clinically, it is important to differentiate with malignant diseases such as extramedullary plasmacytoma, amyloidosis and sarcodosis. Several cases of mucositis in the larynx have been reported in English literature, but none have been reported in Korea. We report a case of plasma cell mucositis in the larynx with a review of literature.