• Title/Summary/Keyword: Plasma jet

Search Result 190, Processing Time 0.027 seconds

A NUMERICAL STUDY ON JET IMPINGEMENT OF PULSED PLASMA DISCHARGE ON A FLAT PLATE (벽면에 충돌하는 펄스 플라즈마 제트 유동특성에 대한 수치적 연구)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.70-77
    • /
    • 2009
  • In this study, time-dependent numerical analysis was carried out to investigate the plasma jet impingement on a flat plate, and a compressible form of two-dimensional inviscid gas dynamics equations were solved using the flux corrected transport algorithm. The mathematical modeling of Joule heating in the polycarbonate capillary bore and the mass ablation from the bore wall was incorporated in the numerical analysis and the series of computation was performed for three cases depending on the distance of the opposing plate from the capillary exit. The computational results reveal that the presence of the opposing plate does not affect the flow conditions inside the capillary when compared to the case of open-air plasma discharge. In the exterior region, the flow structure shows the typical supersonic underexpanded jet which consists of the strong Mach disk in front of the opposing plate and the barrel shock at the side of the jet. It is found that the shock evolution becomes more quasi-steady when the plate distance decreases. Also, the effects of the distance between the capillary bore exit and the opposing plate on the flow conditions along the opposing plate are investigated and the pressure variation on the plate shows more complicated interaction between the plasma discharge and the opposing plate when the location of plate becomes closer to the capillary exit.

Precise correction of the copper emission spectra from the pulsed plasma jet (펄스 플라즈마 제트내에 있는 구리원자의 발광 스펙트럼 정밀 보정)

  • 김종욱;고동섭;오승묵
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.115-120
    • /
    • 2001
  • In the present study, we described in detail a precise correction method of the copper emission spectra obtained from a highpressure and high-temperature pulsed plasma-jet. The pulsed plasma-jet is initiated from an electro-thermal capillary discharge through a small orifice, and expanded rapidly into an atmosphere. In order to characterize the plasma, fundamental measurements such as the plasma excitation temperature or electron number density are essential. However those spectral lines which are directly related to the excitation temperature or electron number density may be distorted by the spectral response of the optical instruments used. Therefore, in this paper, we discuss some efforts to derive precise correction methods of the copper emission spectra obtained from the pulsed plasma-jet. a-jet.

  • PDF

Characteristics of Bovine Teeth Whitening in Accordance with Gas Environments of Atmospheric Pressure Nonthermal Plasma Jet

  • Sim, Geon Bo;Kim, Yong Hee;Kwon, Jae Sung;Park, Daehoon;Hong, Seok Jun;Kim, Young Seok;Lee, Jae Lyun;Lee, Gwang Jin;Lim, Hwan Uk;Kim, Kyung Nam;Jung, Gye Dong;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.250.2-250.2
    • /
    • 2014
  • Currently, teeth whitening method which is applicable to dental surgery is that physician expertises give medical treatment to teeth directly dealed with a high concentration of hydrogen peroxide and carbamide peroxide. If hydrogen peroxide concentration is too high for treatment of maximized teeth whitening effect [1], it is harmful to the human body [2]. To the maximum effective and no harmful teeth whitening effect in a short period of time at home, we have observed the whitening effect using carbamide peroxide (15%) and a low-temperature atmospheric pressure plasma jet which is regulated by the Food and Drug Administration. The gas supplied conditions of the non-thermal atmospheric pressure plasma jet was with the humidified (0.6%) gas in nitrogen or air at gas flow rate of 1000 sccm. Also, the measurement of chemical species from the jet was carried out using the optical emission spectroscopy (OES), the evidence of increased reactive oxygen species compared to non-humidified plasma jet. We have found that the whitening effect of the plasma is very excellent through this experiment, when bovine teeth are treated in carbamide peroxide (15%) and water vapor (0.2 to 1%). The brightness of whitening teeth was increased up to 2 times longer in the CIE chromaticity coordinates. The colorimetric spectrometer (CM-3500d) can measure color degree of whitening effect.

  • PDF

High-Speed Deposition of Diamond Films by DC Plasma Jet (직류 플라즈마 제트를 이용한 고속 다이아몬드 막 증착기술)

  • Kim, Won-Kyu;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.949-951
    • /
    • 1992
  • A low pressure DC plasma jet has been used to obtain diamond films from a mixture of $CH_4$ and $H_2$ with high deposition rate (>1$\mu\textrm{m}$/min). The effects of the deposition conditions such as torch geometry, substrate temperature, gas mixing ratio, chamber pressure, axial magnetic field on the diamond film properties such as morphology, purity, uniformity of the film and deposition rate, etc. have been examined with the aid of Scanning Electron Microscopy, X-Ray Diffraction, and Raman Spectroscopy. Both the growth rate and particle size increased rapidly for low methane concentrations but saturated and the morphology changed from octahedral to cubic structure when the concentration exceeded 1.0 %. Higher growth rates (>1.5${\mu}m$/min) can be obtained by applying an axial magnetic field to the DC plasma jet. Diamond obtained from the magnetized plasma jet also shows a sharp peak at 1332.5$cm^{-1}$ in the Raman Spectra and this result implies that higher growth rate with a good quality diamond films can he obtained by applying an external magnetic field to the plasma jet.

  • PDF

The Study of DNA Damage Induced by Atmospheric Pressure Plasma Jet and Their Mechanisms

  • Park, Yeunsoo;Song, Mi-Young;Yoon, Jung-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.1-155.1
    • /
    • 2013
  • The goals of this study are to elucidate the plasma effects on DNA molecules to apply some plasma based applications and also to find out the mechanisms of plasma-induced DNA damage in biomolecule. Nonthermal atmospheric pressure plasma has much potential for medical, agricultural and food applications for the future. The atmospheric pressure plasma jet (APPJ) contains radicals, charged particles, low energy electrons, excited molecules and UV light. It has been started doing experiments using APPJ at the early 21th. And some recent results showed that APPJ has a possibility to apply to new fields like mentioned above. But it is kind of at the very early stages of plasma based application. It is definitely necessary much of theoretical and experimental studies to further understanding to use nonthermal atmospheric pressure plasma in biomedical, agriculture and food parts. Here we introduce a new experimental system to study plasma effects on biomolecules. And we will show some recent results of LEE-induced DNA damage using electron irradiation apparatus under ultra-high vacuum.

  • PDF

Decomposition Characterist of Toluene Using a Glidarc Water-jet Plasma (Glidarc 워터젯 플라즈마를 이용한 톨루엔 분해 특성)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.329-335
    • /
    • 2008
  • Volatile organic compounds emitted to the atmosphere can cause adverse effects on human health and participate in photochemical smog formation reactions. The destruction of a series of VOCs has been carried out by non-thermal plasma in other researches. And the characteristic of non-thermal plasma was operated at atmospheric pressure and low temperature. A new type non-thermal plasma reactor was investigated combined Glidarc plasma with water jet in this research. Also, it was found that the water-jet had an significant effect on the toluene removal efficiency. But too much water content does not favor toluene decomposition by decreasing of reaction temperature. The input toluene concentration, gas flow rate, water flow rate and specific energy input were used as experiment variables. The toluene removal efficiency, energy efficiency and specific energy input were 75.3%, 146.6 g/kWh and $1.12kWh/m^3$ at a water flow rate of 100 mL/min.

Preliminary Results on Plasma Counterflow Jets for Drag Reduction of a High Speed Vehicle (초고속 비행체 항력 감소를 위한 플라즈마 분사장치에 대한 예비 결과)

  • Kang, Seungwon;Choi, Jongin;Lee, Jaecheong;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.101-112
    • /
    • 2016
  • The characteristic analysis and fundamental test of a plasma generator is performed for drag reduction of a high speed vehicle. In high pressures, thermal plasmas is suitable for generating plasmas. The appropriate plasma torch is selected and used to generate thermal plasmas. The plasma torch, which can emit high-speed and high-pressure plasma jet, is suitable for generating plasma counterflow jet. In this study, the fundamental test and analysis for the plasma torch is summarized. Results show that supplying gas pressures and electrode gap of plasma torch are considered as critical parameters for generating plasma jets.

Reforming of Hydrocarbon Fuel Using Water Jet Plasma (Water Jet 플라즈마를 이용한 탄화수소 연료 개질)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to develop water jet plasma reactor and investigate the optimal condition of the syngas production by reforming of hydrocarbon fuel. Fuel used was propane and plasma was generated by arc discharge on water jet surface. Discharge slipping over the water surface has a number of advantages such as a source of short-wave and UV radiation, and it can be used for biological and chemical purification of water. Parametric screening studies were conducted, in which there were the variations of power ($0.18{\sim}0.74$ kW), water jet flow rate($38.4{\sim}65.6$ mL/min), electrode gap($5{\sim}15$ mm) and treatment time($2{\sim}20$ min). When the variations were 0.4 kW, 53.9 mL/min, 10 mm and 20 min respectively, result of maximum $H_2$ concentration was 61.6%, intermediates concentration were 6.1% and propane conversion rate was 99.8%.

100KW DC Arc Plasma of CVD System for Low Cost Large Area Diamond Film Deposition

  • Lu, F.X.;Zhong, G.F.;Fu, Y.L.;Wang, J.J.;Tang, W.Z.;Li, G.H.;Lo, T.L.;Zhang, Y.G.;Zang, J.M.;Pan, C.H.;Tang, C.X.;Lu, Y.P.
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.216-220
    • /
    • 1996
  • In the present paper, a new type of DC arc plasma torch is disclosed. The principles of the new magnetic and fluid dynamic controlled large orifice long discharge tunnel plasma torch is discussed. Two series of DC Plasma Jet diamond film deposition equipment have been developed. The 20kW Jet equipped with a $\Phi$70 mm orifice torch is capable of deposition diamond films at a growth rate as high as 40$\mu\textrm{m}$/h over a substrate area of $\Phi$65 mm. The 100kW high power Jet which is newly developed based on the experience of the low power model is equipped with a $\Phi$120 mm orifice torch, and is capable of depositing diamond films over a substrate area of $\Phi$110 mm at growth rate as high as 40 $\mu\textrm{m}$/h, and can be operated at gas recycling mode, which allows 95% of the gases be recycled. It is demonstrated that the new type DC plasma torch can be easily scaled up to even higher power Jet. It is estimated that even by the 100kW Jet, the cost for tool grade diamond films can be as low as less than $4/carat.

  • PDF

Measurement of Plasma Parameters (Te and Ne) and Reactive Oxygen Species in Nonthermal Bioplasma Operating at Atmospheric Pressure

  • Choi, Eun Ha;Kim, Yong Hee;Kwon, Gi Chung;Choi, Jin Joo;Cho, Guang Sup;Uhm, Han Sup;Kim, Doyoung;Han, Yong Gyu;Suanpoot, Pradoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.141-141
    • /
    • 2013
  • We have generated the needle-typed nonthermal plasma jet by using an Ar gas flow at atmospheric pressure. Diagnostics of electron temperature anddensity is critical factors in optimization of the atmospheric plasma jet source in accordance with the gas flow rate. We have investigated the electron temperature and density of plasma jet by selecting the four metastable Ar emission lines based on the atmospheric collisional radiative model and radial profile characteristics of current density, respectively. The averaged electron temperature and electron density for this plasma jet are found to be ~1.6 eV and ~$3.2{\times}10^{12}cm^{-3}$, respectively, in this experiment. The densities of OH radical species inside the various bio-solutions are found to be higher by about 4~9 times than those on the surface when the argon bioplasma jet has been bombarded onto the bio-solution surface. The densities of the OH radicalspecies inside the DI water, DMEM, and PBS are measured to be about $4.3{\times}10^{16}cm^{-3}$, $2.2{\times}10^{16}cm^{-3}$, and $2.1{\times}10^{16}cm^{-3}$, respectively, at 2 mm downstream from the surface under optimized Ar gas flow 250 sccm.

  • PDF