• 제목/요약/키워드: Plasma density

검색결과 1,747건 처리시간 0.035초

플라즈마 파라메타와 자계의 상관관계에 관한 연구 (A study on the relationships between plasma parameters and magnetic field)

  • 김두환;장윤석;조정수;박정후
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.426-431
    • /
    • 1996
  • It is well known that the understanding of the complex mechanism of magnetoplasma is closely related with understanding of the collective behavior of discharge plasma parameters such as the cathode-sheath potential, cathode-sheath thickness, electron temperature, electron density, and ambipolar diffusion. In this paper, some of the relationships between these plasma parameters and magnetic field is investigated experimentally with a Langmuir probe in the magnetoplasma generated by D.C diode system. It is found that when magnetic field is increased, cathode-sheath potential, cathode-sheath thickness, and ambipolar diffusion are decreased. In addition, peak ion density obtained as a parameter of ionic signal voltage by Faraday cup method is independent of magnetic field. (author). 9 refs., 11 figs.,1 tab.

  • PDF

헬리콘 플라즈마의 전기적 특성 (Electrical Characteristics of Helicon Wave plasmas)

  • 윤석민;김정형;서상훈;장흥영
    • 한국진공학회지
    • /
    • 제5권1호
    • /
    • pp.85-92
    • /
    • 1996
  • The external electricla characteristics of helicon wave plasmas were measured over a wide range of RF power and magnetic filed. External parameters. such as antenna voltage , current, phase shift, and interanl parameter, electron density were measured at 7MHz, 1mTorr Ar discharge . The equivalent discharge resistance and reactance, and the power transfer efficiency were calculated through these measurements. There are a helicon mode which produces high density plasma by helicon wave and a lowmode which produces low density plasma by capaictive electric field. In case of the helicon mode, the anternna voltage and current were lower than those of the low-mode. The phase difference between voltage and current decreased suddenly at the transition point from the low-mode to the helicon mode. Equivalent resistance and power efficiency increased and reactance decreased suddenly at the transition point. These results mean that the power transperred to plasma and the nutual coupling between the antenna and plasma increase as the mode changes from the low-mode to the helicon mode.

  • PDF

단일탐침법을 사용한 평판형 광원의 제논 (Xe) 플라즈마 특성 연구 (Xe Plasma Property with Flat Lamp by Langmuir Probe)

  • 백광현;이종찬;황명근;최용성;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권1호
    • /
    • pp.50-54
    • /
    • 2006
  • The study on discharge of the flat lamp lighting source has been requested increasingly. To improve the brightness, life time and efficiency of flat lamp, the plasma diagnosis of flat lamp lighting source is very important. When a distance of discharge electrode is 5.5mm and width is 16.5mm, we measured electron temperature and electron density with single Langmuir probe in flat lamp. Pressure conditions to test the plasma discharge from 100 Torr to 300 Torr. The power supply was PDS-4000 with frequency 20kHz and duty ratio $20\%.$ Form these experimental results, electron temperature was decreased according to increase the gas pressure and the voltage while electron density was increased.

유기물 광전소자 제작을 위한 박스 캐소드 스퍼터 기술 (Box Cathode Sputtering Technologies for Organic-based Optoelectronics)

  • 김한기
    • 한국전기전자재료학회논문지
    • /
    • 제19권4호
    • /
    • pp.373-378
    • /
    • 2006
  • We report on plasma damage free-sputtering technologies for organic light emitting diodes (OLEDs), organic thin film transistor (OTFT) and flexible displays by using a box cathode sputtering (BCS) method. Specially designed BCS system has two facing targets generating high magnetic fields ideally entering and leaving the targets, perpendicularly. This target geometry allows the formation of high-density plasma between targets and enables us to realize plasma damage free sputtering on organic layer without protection layer against plasma. The OLED with Al cathode prepared by BCS shows electrical and optical characteristics comparable to OLED with thermally evaporated Mg-Ag cathode. It was found that OLED with Al cathode layer prepared by BCS has much lower leakage current density ($1{\times}10^{-5}\;mA/cm^2$ at -6 V) than that $(1{\times}10^{-2}{\sim}-10^0\;mA/cm^2)$ of OLED prepared by conventional DC sputtering system. This indicates that BCS technique is a promising electrode deposition method for substituting conventional thermal evaporation and DC/RF sputtering in fabrication process of organic based optoelectronics.

유기물 광전소자 제작을 위한 박스 캐소드 스퍼터 기술 (Box Cathode Sputtering Technologies for Organic Optoelectronics)

  • 김한기;이규성;김광일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.53-54
    • /
    • 2005
  • We report on plasma damage free-sputtering technologies for organic light emitting diodes (OLEDs), organic thin rim transistor (OTFT) and flexible displays by using a box cathode sputtering (BCS) method. Specially designed BCS system has two facing targets generating high magnetic fields ideally entering and leaving the targets, perpendicularly. This target geometry allows the formation of high-density plasma between targets and enables us to realize plasma damage free sputtering on organic layer without protection layer against plasma. The OLED with top cathode prepared by BCS shows electrical and optical characteristics comparable to OLED with thermally evaporated Mg-Ag cathode. It was found that TOLED with ITO or IZO top cathode layer prepared by BCS has much lower leakage current density ($1\times10^{-5}$ mA/cm2 at -6V) than that ($1\times10^{-1}\sim10^{\circ}mA/cm^2$)of OLED prepared by conventional DC sputtering system. This indicates that BCS technique is a promising electrode deposition method for substituting conventional thermal evaporation and dc/rf sputtering in fabrication process of organic based optoelectronics.

  • PDF

Enviromental Application of Plasma Technology

  • 이원주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.119.1-119.1
    • /
    • 2014
  • Toxic waste disposal: Many people think that when toxic waste is dumped into the ocean or into the air, it disappears. This belief is incorrect. Rather than disappearing, it accumulates over time and slowly destroys the environment. Ultimately, it leads to the destruction of human race. Plasma is environmentally friendly: Plasma is environmentally friendly because it is created and disappears. When plasma is formed on the earth, you need certain conditions such as accelerating electrons by an electrical discharge or a particle accelerator. When this is gone, plasma completely disappears, leaving no impact on the environment. Plasmas produce radicals: Even if plasma density is low at atmospheric pressure, many radicals (excited states of molecules) are created. These radicals are chemically very aggressive. So instead of using harmful chemicals, plasma can be utilized for less of an impact on the environment. Plasma can reach very high temperatures: Plasma is also useful because when you control the density, you can easily reach high temperatures up to $5000{\sim}6000^{\circ}C$ at atmosphere pressure. Because of this heat and the chemical aggressiveness of the plasma, there are many green applications for plasma technology. Pulsed power technology: Pulsed electric field for extraction, drying and killing bacteria. Treatment of biological tissue by pulsed electric fields: Extraction of substances from cells: Sterilisation, Medical applications, Growth stimulation, Food preparation. Each application has its specialities, especially with respect to pulse shape and electric field strength.

  • PDF

Design of Thomson Scattering System Using VPH Grating for Plasma Processing

  • Joa, Sang-Beom;Ko, Min-Guk;Kang, In-Je;Yang, Jong-Keun;Yu, Yong-Hun;Lee, Heon-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.525-525
    • /
    • 2013
  • Low temperature plasma diagnosis is one of the big issues in laboratory scale or processing industry. One of the most powerful techniques of plasma diagnostics is the use of the scattering of electromagnetic radiation from the plasma. Electron temperature and density are important parameters for understanding the information of plasmas in the plasma processing industry. Laser scattering experiments on plasma can provide a substantial amount of information about plasma parameters such as the electron density ne, the electron temperature Te, and the neutral density nn and temperature Tn. Thomson scattering spectroscopy is used several method, in accordance with detector type. Commonly, Thomson scattering is used several notch filter to separate expanded wavelength. Since using a spectrometer with surface relief grating or notch filter, the system of the measurement will be complicated and bigger. In this study, using VPHG (Volume Phase Holographic Grating) in order to install the simple and cheap system. VPHG has the advantage of the system installation, because it can be Transmission Type. The diffraction efficiency and dispersion angle of VPHG is higher than the surface relief grating relatively. For a wavelength and bandwidth selection, Using a slit or mask to select a rejection wavelength instead of notch filter.

  • PDF

A STUDY ON THE RELATIONSHIP BETWEEN PLASMA CHARACTERISTICS AND FILM PROPERTIES FOR MgO BY PULSED DC MAGNETRON SPUTTERING

  • Nam, Kyung H.;Chung, Yun M.;Han, Jeon G.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.35-35
    • /
    • 2001
  • agnesium Oxide (MgO) with a NaCI structure is well known to exhibit high secondary electron emission, excellent high temperature chemical stability, high thermal conductance and electrical insulating properties. For these reason MgO films have been widely used for a buffer layer of high $T_c$ superconducting and a protective layer for AC-plasma display panels to improve discharge characteristics and panel lifetime. Up to now MgO films have been synthesized by lE-beam evaporation, Molecular Beam Epitaxy (MBE) and Metalorganic Chemical Vapor Deposition (MOCVD), however there have been some limitations such as low film density and micro-cracks in films. Therefore magnetron sputtering process were emerged as predominant method to synthesis high density MgO films. In previous works, we designed and manufactured unbalanced magnetron source with high power density for the deposition of high quality MgO films. The magnetron discharges were sustained at the pressure of O.lmtorr with power density of $110W/\textrm{cm}^2$ and the maximum deposition rate was measured at $2.8\mu\textrm{m}/min$ for Cu films. In this study, the syntheses of MgO films were carried out by unbalanced magnetron sputtering with various $O_2$ partial pressure and specially target power densities, duty cycles and frequency using pulsed DC power supply. And also we investigated the plasma states with various $O_2$ partial pressure and pulsed DC conditions by Optical Emission Spectroscopy (OES). In order to confirm the relationships between plasma states and film properties such as microstructure and secondary electron emission coefficient were analyzed by X-Ray Diffraction(XRD), Transmission Electron Microscopy(TEM) and ${\gamma}-Focused$ Ion Beam (${\gamma}-FIB$).

  • PDF

평판형 광원에서 제논(Xe) 플라즈마의 전기적 광학적 특성 연구 (The electrical and optical properties of Xe plasma in flat lamp)

  • 백광현;양종경;이종찬;최용성;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집
    • /
    • pp.60-64
    • /
    • 2005
  • Discharge of the flat lamp lighting source research are requested very much. For improving brightness, life time, efficiency of flat lamp, plasma diagnosis of the flat lamp lighting source to understand property of lighting source is very important, distance of discharge electrode is 5.5mm and width is 16.5mm, we measured electron temperature and electron density measured with single langmuir probe in flat lamp, we tested the discharge from 100 Torr to 300 Torr pressure, the Pulse is rectangular pulse with frequency 20kHz and Duty ratio 20%. Resultly, electron temperature decreases and electron density increase as increase the gas pressure and electron temperature decreases and electron density increase as increase the voltage.

  • PDF

Millimeter-wave Fast-sweep FM Reflectometry Applied to Plasma Density Profile Measurements

  • Kang, Wook-Kim
    • Journal of electromagnetic engineering and science
    • /
    • 제1권1호
    • /
    • pp.18-23
    • /
    • 2001
  • A fast-sweep broadband FM reflectometer system has been successfully developed and operacted at the DIII-D tokamak, producing reliable density Profiles with excellent spatial (1 $\leq$ cm) and temporal resolution (~100 $\mu$ s). The system uses a solid-state microwave oscillator and an active quadrupler, covering full Q-band frequencies (33~50 GHz) and providing relatively high output power (20~60 mW). The system hardware allows fu11band frequency sweep in 10 $\mu$ s, but due to digitization rate limit on DIII-D, sweep time was limited to 75~100 $\mu$ s. Fast frequency sweep has helped to reduce density fluctuation effects on the reflectometer phase measurements, thus improving reliability for individual sweeps. The fast-sweep system with high spatial and temporal resolution has allowed to measure fast-changing edge density profiles during plasma ELMS and L-H transitions, thus enabling fast-time sca1e physics studies.

  • PDF