• Title/Summary/Keyword: Plasma chemistry

Search Result 763, Processing Time 0.04 seconds

The Study on Characteristics of N-Doped Ethylcyclohexane Plasma-Polymer Thin Films

  • Seo, Hyeon-Jin;Jo, Sang-Jin;Lee, Jin-U;Jeon, So-Hyeon;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.540-540
    • /
    • 2013
  • In this studying, we investigated the basic properties of N-doped plasma polymer. The N-doped ethylcyclohexane plasma polymer thin films were deposited by radio frequency (13.56 MHz) plasma-enhanced chemical vapor deposition method. Ethylcyclohexenewas used as organic precursor (carbon source) with hydrogen gas as the precursor bubbler gas. Additionally, ammonia gas [NH3] was used as nitrogen dopant. The as-grown polymerized thin films were analyzed using ellipsometry, Fourier-transform infrared [FT-IR] spectroscopy, Raman spectroscopy, FE-SEM, and water contact angle measurement. The ellipsometry results showed the refractive index change of the N-doped ethylcyclohexene plasma polymer film. The FT-IR spectrashowed that the N-doped ethylcyclohexene plasma polymer films were completely fragmented and polymerized from ethylcyclohexane.

  • PDF

Fabrication of Ag/In2O3/TiO2/HNTs hybrid-structured and plasma effect photocatalysts for enhanced charges transfer and photocatalytic activity

  • Wang, Huiqin;Wu, Dongyao;Liu, Chongyang;Guan, Jingru;Li, Jinze;Huo, Pengwei;Liu, Xinlin;Wang, Qian;Yan, Yongsheng
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.164-174
    • /
    • 2018
  • The purpose of this work designed hybrid-structured and plasma effect photocatalyst of $Ag/In_2O_3/TiO_2/HNTs$ via sol-gel and photo-reduction methods. The structures, morphologies, optical and photoelectric performances of as-prepared photocatalysts were characterized via XRD, TEM, XPS, BET, UV-vis DRS, PL and photocurrents. The photocatalytic activity was evaluated by degradation of TC. The results showed that the hybrid-structure and plasma effect can effectively cause the multi-transfer of electrons and increase the separation rate of electron and hole pairs which obtained high photocatalytic activity. The photocatalytic degradation processes reveal that $^{\bullet}O_2{^-}$ and $h^+$ are major active species.

Applications of Plasma Modeling for Semiconductor Industry

  • Efremov, Alexandre
    • Electrical & Electronic Materials
    • /
    • v.15 no.9
    • /
    • pp.10-14
    • /
    • 2002
  • Plasma processing plays a significant role in semiconductor devices technology. Development of new plasma systems, such as high-density plasma reactors, required development of plasma theory to understand a whole process mechanism and to be able to explain and to predict processing results. A most important task in this way is to establish interconnections between input process parameters (working gas, pressure flow rate input power density) and a various plasma subsystems (electron gas, volume and heterogeneous gas chemistry, transport), which are closely connected one with other. It will allow select optimal ways for processes optimizations.

  • PDF