• Title/Summary/Keyword: Plasma arc voltage

Search Result 92, Processing Time 0.029 seconds

A Study on the Influence of Coaxial Parallel Magnetic Field upon Plasma Jet (Plasma Jet의 동축평행 자계에 의한 영향에 관한 연구 ( 1 ))

  • 전춘생
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.57-69
    • /
    • 1973
  • The aim of this study was to investigate the behaviors of plasma jet under coaxial magnetic field in paralled with it for controlling optical characteristics and input power of plasma jet without impurity and instability of arc plasma column. Because the discharge characteristics of plasma jet were so distinctively different according to the existence or non-existence of magnetic field, the input power, luminous intensity of plasma jet and thermal efficiency were comparatively studied in respect of such variables as arc current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle, with the use of several materials which were different in diameter and length of nozzel. The results were as follows; 1) The voltage tends to show a drooping characteristic at law current and then rises gradually. The luminous intensity of plasma jet increases exponentially with arc current. 2) Arc voltage increases and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity increase in accordance with the quantity of argon flow. 4) At first step, arc voltage increases to maximum value with the growth of flux density and then tends to show a gradual decrease. Luminous intensity decreases with the growth flux density. 5) Arc voltage decreases as the constriction length of nozzle increases, maximum decrease is shown at the constriction length of 20(mm) and it increases beyond that value. The luminous intensity decreases as the constriction length grows. 6) Arc voltage and luminous in tensity increase with the growth of diameters of nozzle. 7) Thermal efficiency has values between 50% and 75%, being influenced by arc current, the quantity of argon flow, flux density, the length of electrode gap and the constriction length of nozzle.

  • PDF

A Study on Energy Recovery Circuit in Sputtering Plasma Power supply for arc Discharge Prevention (스퍼터용 플라즈마 전원장치의 아크방지를 위한 에너지 회생회로에 대한 연구)

  • Ban, Jung-Hyun;Han, Hee-Min;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.3
    • /
    • pp.116-121
    • /
    • 2012
  • Recently, in the field of renewable energy such as solar cells including the semiconductor and display industries, thin film deposition process is being diversified. Furthermore, to deal with trend of making high-quality and fast, the high-capacity and output plasma power supply which can control high density plasma is required. The biggest problem is arc discharge caused by using high voltage power supply. Thus, the key function of plasma power supply is to prevent arc discharge and there is a need to maintain the possible minimum arc energy. In DC sputtering power supply, on a periodic basis (-)voltage powering up is able to significantly reduce arcing, as well as arc discharge prevention, and maintaining uniform charge density. This conventional method for powering up (-)voltage requires heavy mutual inductance of the transformer to avoid distortion problem of the output voltage. This study is about energy recovery circuit for arc discharge prevention in sputtering plasma power supply. By using energy recovery circuit, it is possible to reduce the mutual inductance and size of the transformer dramatically, prevent distortion of the output voltage and has a stable output waveform. This work was proved through simulation and experimental study.

A Study of an Automatic Tip-to-Workpiece Distance Control System for Plasma Arc Cutting (플라즈마 아크 절단에서 팁-모재간 거리 자동제어 시스템에 관한 연구)

  • 구진모;김재웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.132-140
    • /
    • 2000
  • Plasma arc cutting is one of the most widely used processes in metal cutting fields and is a process that produces parted metal plates by cutting them with an arc plasma established between the electrode tip and the plate(workpiece). When the tip-to-workpiece distance varies during cutting, the cut quality, for example the kerf width, is deteriorated by the change of plasma arc. The variations of tip-to-workpiece distance are due to the different factors such as inaccuracies in setting the torch or workpiece, thermal distortions during cutting, and uneven surface of workpiece. The control to keep the tip-to-workpiece distance constant is thus indispensable to improve the flexibility of automatic plasma arc cutting system applications. In this study, an arc sensor which utilizes the electrical signal obtained from the plasma arc itself was developed. The arc sensor has an advantage that no particular sensing device is necessary and real-time sensing of the tip-to-workpiece distance is possible directly under the plasma arc. The relationship between plasma arc voltage and tip-to-workpiece distance was determined through the repeated experimental results. The model was used for developing an automatic tip-to-workpiece distance control system of plasma arc cutting. It could be shown that the proposed system has a successful capability of tip-to-workpiece distance control.

  • PDF

A Study of Process factors on the Recycling of Reactive Metal Scraps in Plasma Arc Remelting (Plasma Arc Remelting에서 활성 금속 Scrap 재활용에 미치는 공정인자의 연구)

  • Jung, Jae-Young;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.3-9
    • /
    • 2017
  • In this study, plasma arc remelting behaviors according to arc current, arc voltage, and types of plasma gas were investigated using Kroll processed Ti sponges as anode. In the discharge pressure range of vacuum pump ($200{\sim}300kgf/cm^2$), the arc voltage did not vary greatly with the increase of discharge pressure at a given arc length. This means that the pressure in the vacuum chamber during operation hardly changes and the atmospheric pressure maintains. Under various conditions of arc currents (700~900A), the arc voltage slightly increased with arc current. The effects of anode materials and operational variables on the arc length-arc voltage relationship were compared with the results in previous studies. When the atmospheric gas changed from argon to helium, double effect of improvement on the output of the steady state was observed. The increase of output in the plasma arc device was accompanied by an increase in the melting rate of the Ti sponge and the quality of the ingot surface was also improved. The plasma arc remelting of the new scrap titanium and the old scrap zirconium alloy could result in the fabrication of an ingot with high surface quality.

Extension of Electrode Lifetime for Plasma Torch by Axial Magnetic Field (축방향 자기장 인가를 통한 플라즈마토치 전극 수명연장)

  • Cho, Chu-Hyun;Han, Yong-Ki;Han, Hyun;Kwon, Oh-Kyung;Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1978-1981
    • /
    • 2007
  • Axial magnetic field was applied into the hollow anode of plasma torch for the purpose of extension of electrode lifetime. The average arc voltage increased because the arc column became longer, the arc voltage ripple frequency became low. The steady state of arc voltage was removed by applied magnetic filed. The lifetime of electrode was 60 times longer than operation without magnetic field.

A Study on Medium Voltage Power Supply with Enhanced Ignition Characteristics for Plasma Torch

  • Jung, Kyung-Sub;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.242-243
    • /
    • 2010
  • This paper investigates a power supply of medium voltage with enhanced ignition characteristics for plasma torch. Series resonant half-bridge topology is presented to be a suitable ignition circuitry. The ignition circuitry is integrated into the main power conversion system of a multi-phase staggered three-level dc-dc converter with a diode front-end rectifier. The plasma torch rated for 3MW, 2kA and having the physical size of 1m long is selected to be a high enthalpy source in waste disposal system. The steady-state and transient operations of plasma torch are simulated. The parameters of Cassie-Mary arc model are calculated based on 3D magneto-hydrodynamic simulations. Circuit simulation waveform shows that the ripple of arc current can be maintained within ${\pm}10%$ of its rated value under the existence of load disturbance. This power conversion configuration provides high enough ignition voltage around 5KA during ignition phase and high arc stability under the existence of arc disturbance noise resulting in a high-performance plasma torch system.

  • PDF

A study on the physical behavior of arc plasmas in transferred-type Torch (이행형 토치에서의 아크 플라즈마의 물리적 거동에 관한 연구)

  • 김외동;고광철;강형부
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.415-425
    • /
    • 1996
  • This study presents an analytical method of solving the behaviors of arc plasma in a nozzle constricting transferred-type torch and purposes to obtain the basic data for the design of a plasma torch, which can be obtained from the temperature, pressure, velocities and voltage distributions. We have to solve some conservation equations simultaneously and need to know the exact thermal gas properties in order to obtain the correct behaviors of arc plasma. It is also necessary to give the relevant physical or geometric boundary conditions. For the simplicity of analysis, we assumed that (a) the plasma flow is laminar, (b)the local thermodynamic equilibrium, i.e. LTE, prevails over the entire arc column region. The electrode sheath effects were neglected and the nozzle area was excluded from the analysis by assuming that the current flow into the nozzle is zero. We solved the momentum transfer equation including the self-magnetic pinch effect, and obtained the temperature distribution from the energy conservation equation. From this temperature, we could get arc voltage distribution. (author). refs., figs., tabs.

  • PDF

Medium Voltage Power Supply with Enhanced Ignition Characteristics for Plasma Torches

  • Jung, Kyung-Sub;Suh, Yong-Sug
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.591-598
    • /
    • 2011
  • This paper investigates a power supply of medium voltage with enhanced ignition characteristics for plasma torches. A series resonant half-bridge topology is presented as a suitable ignition circuitry. The ignition circuitry is integrated into the main power conversion system of a multi-phase staggered three-level dc-dc converter with a diode front-end rectifier. A plasma torch rated at 3MW, 2kA and having a physical size of 1m is selected to be the high enthalpy source for a waste disposal system. The steady-state and transient operations of a plasma torch are simulated. The parameters of a Cassie-Mary arc model are calculated based on 3D magneto-hydrodynamic simulations. The circuit simulation waveform shows that the ripple of the arc current can be maintained within ${\pm}10%$ of its rated value under the presence of a load disturbance. This power conversion configuration provides a high enough ignition voltage, around 5KA, during the ignition phase and high arc stability under the existence of arc disturbance noise resulting in a high-performance plasma torch system.

Measurement of a temperature and components of arc plasma with a spectroscopic method (분광법을 이용한 아크 플라즈마의 온도 및 성분 측정)

  • Jeong, Young-Woo;Lee, Sang-Youb;Park, Hong-Tae;Oh, Il-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1840-1842
    • /
    • 2003
  • This paper describes an experiment of detecting a temperature and components of arc plasma of electrical circuit breaker with a spectroscopic system. The system includes an optical fiber, a monochromator which has three gratings from low to high resolution and ICCD of which time resolution is 50 ns. This system enables measuring a temperature and components of arc plasma of a circuit breaker which is generated and extinguished in a few ms. We use a Planck's law and Boltzmann Plot method for calculating a temperature of arc plasma. A Xenon lamp is used for calibrating the system and this is very important for calculating a temperature of arc plasma. In this study, Arc plasma of Ag and Cu contact was investigated and these represent the contact of low voltage and extra-ultra high voltage circuit breaker, respectively. 8 $kA_{rms}$ test current was applied with a capacitor bank.

  • PDF

A study on the A.C. arc movement in a transverse A.C. magnetic field at atmospheric pressure (황축교류자계에 의한 대기중에서의 교류 아아크의 이동에 관한 연구)

  • 전춘생;엄기환
    • 전기의세계
    • /
    • v.24 no.6
    • /
    • pp.77-84
    • /
    • 1975
  • This paper treats A.C. arc movement in a transverse A.C. magnetic field at atmospheric pressure with the purpose of selecting electrode materials and obtaining detailed data for design of A.C. air circuit breaker, plasma accelerator and plasma jet. Arc velocities in transverse magnetic field are measured by varying arc current, arc voltage, gap length, magnetic flux density and the erosion of electrode surface, which influence arc velocities. The main results are; 1)Arc velocities in transverse magnetic field have different values according to electrodes of various materials and decrease in a descending order of cold cathode, medium cathode and hot cathode. 2)Arc velocities in transverse magnetic field increases with arc current, arc voltage, gap length and magnetic flux densith and on the other hand decrease with the increase of electrode surface erosion. 3)D.C.arc velocity in D.C. magnetic field is higher than A.C. arc velocity in A.C. magnetic field of the same value.

  • PDF