• Title/Summary/Keyword: Plasma Transferred Arc Welding

Search Result 23, Processing Time 0.031 seconds

Characteristics of High Temperature Fatigue for welding material by Plasma Transferred Arc Weld (플라즈마 분말 용접재의 고온피로특성)

  • Choi, Seong-Dae;Cheong, Seon-Hwan;Kweon, Hyun-Kyu;Kim, Gi-Man;Kim, Jam-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.92-97
    • /
    • 2007
  • The overlay welding the automobile where the durability is demanded, it is used in the vessel engine valve, plant valve and pump parts. Cause of damage public opinion one what is thought is the fatigue load due to the opening and shutting operation right time repetition of the engine valve. The damage cause of the engine valve or explanation of destruction mechanism is very difficult. The research which it sees to make clear a overlay welding of Co-alloy by Plasma Transferred Arc Weld Surfacing Process reconsideration fatigue crack initiation and fatigue crack growth mechanism at high temperature.

  • PDF

Formation of Thicker hard Alloy Layer on Aluminum Alloy by PTA Overlaying with Metal Powders (플라스마 아크 紛體肉盛法에 의한 Al 合金의 硬化厚膜 合金化層의 形成)

  • ;;中田一博;松田福久
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.74-85
    • /
    • 1993
  • Effect of Si metal powders addition with the plasma transferred arc(PTA) overlaying process on characteristics of the alloyed layer in aluminum alloy(A5083) has been investigated. The overlaying conditions were 175-250A in plasma arc current, 500mm/min in travel speed, the 5-20g/min in powder feeding rate. Main results obtained are summarized as follows. 1)Sufficient size of molten pool on surface of base metal was required for forming an alloyed layer; in a fixed travel, the formation of alloyed layer with clear and beautiful surface depend upon the plasma arc current and powder feeding rate; the greater plasma arc current and the smaller powder feeding rate were, the better bead was formed. Optimum alloyed conditions by which an excellent alloyed bead obtained was 225A in plasma arc current. PTA process made it possible to form an alloyed layer with up to 67wt% Si. 2)Microstructure in the alloyed layer was in accord with prediction from the Al-Si phase diagram 3)The hardness of the alloyed layer increased in proportion to Si content. 4)As volume fraction of primary Si increased, the specific wearness of the alloyed layer was significantly improved. However, no further improvement was found when the volume fraction was greater than about 30%. 5)Utilizing the PTA process, a crack free alloyed layer with maximum hardness of about Hv 310 could be obtained.

  • PDF

Wear performance of Plasma Transferred Arc deposited layers

  • Yoon, Byoung-Hyun;Kim, Hyung-Jun;Lee, Chang-Hee
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.245-247
    • /
    • 2001
  • In this study, the effects of dilution on the wear behavior of PTAW (Plasma Transferred Arc Welding) Inconel 625, Inconel 718 and Stellite 6 overlays on Nimonic 80A were investigated. Inorder to evaluate the wear performance, two-body and three-body abrasive wear test, and dry sliding wear test were performed. According to wear tests, the wear rate of deposit with dilution 30% was higher than that of dilution 10% by 10%, and it was also found the plastic deformation near worn surface.

  • PDF

ANALYSIS OF TRANSIENT TEMPERATURE DISTRIBUTION IN ROTATING ARC GMA ELDING BY CONSIDERING DROPLET DEFLECTION

  • Kim, Cheolhee;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.763-768
    • /
    • 2002
  • This paper presents a mathematical model predicting the temperature distribution in rotating GMA welding. The bead width increases with rotation frequency at the same rotation diameter because the molten droplets are deflected by centrifugal force. The numerical solution is obtained by solving the transient three-dimensional heat conduction equation considering the heat input from the welding arc, cathode heating and molten droplets. Generally in GMA welding the heat input may be assumed as a normally distributed source, but the droplet deflection causes some changes in the heat input distribution. To estimate the heat flux distribution due to the molten droplet, the contact point where the droplet is transferred on the weld pool surface is calculated from the flight trajectory of the droplets under the arc plasma velocity field obtained from the arc plasma analysis. The numerical analysis shows a tendency of broadened bead width and shallow penetration depth with the increase of rotating frequency. The simulation results are in good agreement with those obtained by the experiments under various welding conditions.

  • PDF

Formation of Ti and Ti ceramics composite layer on aluminium alloy (Ti 및 Ti계 세라믹스에 의한 Al합금의 표면복합합금화)

  • ;;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.103-114
    • /
    • 1995
  • Plasma Transferred arc(PTA) hard facing process has been developed to obtain an overlay weld metal having excellent wear resistance. The effect of Ti, TiSi$_{2}$ and TiC powders addition on the surface of Aluminum alloy 5083 has been investigated with PTA process. This paper describes the result of test the performance of the overlay weld metal. The result can be summarized as follows 1. Intermetallic compound is formed on surface of base metal in Ti or TiSi$_{2}$ powder but the reaction with surface of base metal is little seen in TiC powder. 2. In formation of composite layer on aluminum alloy surface by plasma transferred arc welding process, high melting ceramics like TiC powder is excellent. 3. The multipass welding process is available for formation of high density of powder. But the more number of pass, the less effect of powder, it is considered, and limits of number of pass. 4. By increasing area fraction of TiC powder on Al alloy surface, in especially TiC powder the hardness increase more than 40% area fraction and 88% shows about Hv 700.

  • PDF

A Study on the Surface Modification of the Super Alloy by Plasma Transferred Arc Overlay Welding Method

  • Kim, Young-Sik;Lim, Chang-Hoon;Hwang, Won-Seok;Choi, Young-Gook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.852-856
    • /
    • 2007
  • The Plasma Transferred Arc(PTA) overlay welding method is lately introduced as one of the most useful surface overlay method of the engine component. In this paper, the overlay welding method on the Nimonic super alloy was established by the PTA overlay welding process using the same super alloy powder. The characteristics of the Co-base and Ni-base super alloy overlay layers were investigated through the metallurgical, abrasive and cavitation erosion test. The abrasive and cavitation characteristics were investigated at room and high temperature.

Effect of Cu-Additions on the Hand-Over Layer of an Aluminum Alloy - Hardening for the Top Ring Groove of Automotive Piston by the Plasma Transferred Arc Welding Process -

  • Moon, J.H.;Seo, C.J.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.58-62
    • /
    • 2001
  • The surface of AC8A Ah alloy was modified by adding the Cu powder using a Plasma Transferred Arc (PTA) welding process. Under the optimum fabricating conditions, the modified surface of AC8A Ah alloy was observed to possess the sound microstructure with a minimum porosity. Hardness and wear resistance properties of the as-fabricated alloy were compared with those of the 76 heat-treated one. In case of the as-fabricated alloy, the hardness of the modified layer was twice that of the matrix region. Although significant increase in the hardness of the matrix region was observed after T6 heat treatment, the hardness of the modified layer was not observed to change. The wear resistance of the modified layer was significantly increased compared to that of the matrix region. The microstructure of a weld zone and the matrix region were investigated using the optical microscope, scanning electron microscope (SEM), electron probe microanalysis (EPMA), and transmission electron microscope (TEM). The primary and eutectic silicon in the weld zone were finer and more curved than in the matrix region, while some precipitates has had been found therein. According to the TEM observation, the predominant precipitate present in the weld zone was the $\theta$'phase, which is precipitated during cooling by rapid solidification in PTA welding process. Improvement of hardness and wear properties in the weld zone in the as-fabricated condition can be explained based on the presence of $\theta$’precipitates and fine primary and eutectic silicon distribution.

  • PDF

A Study on the Formation of Functionally Composite Layer on Al Alloy Surface by Plasma Transferred Arc Overlaying Process (Plasma Transferred Arc 오버레이법에 의한 Al 합금 표면층의 복합기능화에 관한 연구)

  • 임병수;황선효;서창제
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.107-115
    • /
    • 1999
  • The objective of this research was to study the formation of the thick hardened layer with the addition of metal powder(Cu) and ceramics powders(TiC) on the aluminum 5083 alloys by plasma transferred arc process(PTA process) and to characterize the effect of overlaying conditions on the overlaid layer formation. This was followed by investigating the microstructures of the overlaid layers and mechanical properties such as hardness and wear resistance. The overlaid layer containing copper powder was alloyed and intermetallic compound($CuAl_2$) was formed. The overlaid layers with high melting point TiC powders, however, did not react with base metal. Wear resistance of the alloyed layer was remarkably improved by the formation of $CuAl_2$, precipitate phase, which prevented wear of base aluminum alloys and at higher wear speed, accelerated sliding of the counter part. Wear resistance of the composite layer was also remarkably improved because TiC powder act as a load barring element and Fe debris fragments detached from the counter part act as a solid lubricant on the contact surface.

  • PDF

Wear Behavior of Plasma Transferred Arc Deposited Layers for Ni - and Co - base Alloy (Ni계 및 Co계 합금 PTA 오버레이용접층의 마모거동에 관한 연구)

  • 윤병현;이창희;김형준
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.540-547
    • /
    • 2001
  • This study has evaluated the wear behavior of PTA (Plasma Transferred Arc) Inconel 625 and Stellite 6 overlays on Nimonic 80A substrate. Nimonic 80A alloy was also included for comparison. In order to evaluate the wear performance, three-body abrasive wear test and pin-on-disk dry sliding wear test were performed. Microstructural development during the solidification of deposits is also discussed. Wear test results show that the wear rate of Stellite 6 deposit is lower than that of Inconel 625 deposit and Nimonic 80A. The sliding wear resistance of overlay deposits follows a similar trend to the abrasive wear resistance, but for Nimonic 80A. The main wear mechanisms were abrasive wear for Inconel 625 deposit, adhesive wear and delamination for Stellite 6 deposit in pin-on-disk dry sliding wear test and ploughing in three-body abrasive wear test. Cross sectional examinations of the worn surface of pin specimens after pin-on-disk dry sliding wear test implies that the plastic deformation near worn surface has occurred during the wear testing.

  • PDF