• Title/Summary/Keyword: Plasma Spray Coating

Search Result 222, Processing Time 0.021 seconds

Acoustic Emission Characteristics of Ceramic Coated Steel by Plasma Spraying (플래즈머용사에 의한 세라믹 코팅 강재의 음향방출 특성)

  • Kim, G.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.49-54
    • /
    • 1998
  • This paper is investigated of hardness and adhesiveness of plasma sprayed coating steels by AE(Acoustic Emission) testing when loading a tensile. AE Parameters used are Event, Count, Energy and Amplitude. Test specimens are carbon steel(S45C) with sprayed coating layers of Ni-4.5wt.%Al(bond coating) and $TiO_2$(top coating), and carry out heat treatment at $800^{\circ}C\;and\;1000^{\circ}C$, respectively. The micro-hardness of the heat treatment specimen have been improved more than that of non-heat treatment. On the tensile test, the process and occurence of the exfoliation of the sprayed coating layer can be estimated by AE Characteristics of AE parameters, such as event, count, amplitude and energy, on the layer exfoliation are shown the similar aspects. The exfoliation of bond coating occure at about 20% of strain and top coating is about 5% of strain.

  • PDF

Measurement of the Coating Temperature Evolution during Atmospheric Plasma Spraying (대기압 플라즈마 용사 공정에서의 기판 코팅 온도 영향 연구)

  • Lee, Kiyoung;Oh, Hyunchul
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.624-629
    • /
    • 2020
  • For more effective temperature control of atmospheric plasma sprayed (APS) zirconia thermal barrier coating, understanding of the parameters, which influence the substrate temperature, is essential and also more numerical results based on the experimental data are required. This study aims to investigate the substrate temperature control during an APS process. The APS process deals with air-cooled systems, plasma-gas flow, powder feed rate, robot velocity, and substrate effect on the substrate surface temperature control during the process. This systematic approach will help to handle the temperature control, and thus lead to better coating quality.

Evaluation of wear chracteristics for $Al_{2}O_{3}-40%TiO_{2}$ sprayed on casting aluminum alloy (주조용 알루미늄합금의 $Al_{2}O_{3}-40%TiO_{2}$ 용사층에 대한 마멸특성 평가)

  • 채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.183-190
    • /
    • 1997
  • The wear behaviors of $Al_2O_3-40%TiO_2$ deposited on casting aluminum alloy(ASTM A356) by plasma spray against SiC ball have been investigated experimentally. Friction and wear tests are carried out at room temperature. The friction coefficient of $Al_2O_3-40%TiO_2$ coating is lower than that of pure $Al_2O_3$ coating(APS). It is found that low friction correspond to low wear and high friction to high wear in the experimental result. The thickness of $Al_2O_3-40%TiO_2$ coatings indicated the existence of the optimal coating thickness. It is found that a voids and porosities of coating surface result in the crack generated. As the tensile stresses in coating increased with the increased friction coefficient. The columnar grain of coating will be fractured to achieve the critical stress. It is found that the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tensile and compressire under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. This crack propagation above interface is observed in SEM.

  • PDF

A Study on Plasma Corrosion Resistance and Cleaning Process of Yttrium-based Materials using Atmospheric Plasma Spray Coating (Atmospheric Plasma Spray코팅을 이용한 Yttrium계 소재의 내플라즈마성 및 세정 공정에 관한 연구)

  • Kwon, Hyuksung;Kim, Minjoong;So, Jongho;Shin, Jae-Soo;Chung, Chin-Wook;Maeng, SeonJeong;Yun, Ju-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the plasma corrosion resistance and the change in the number of contamination particles generated using the plasma etching process and cleaning process of coating parts for semiconductor plasma etching equipment were investigated. As the coating method, atmospheric plasma spray (APS) was used, and the powder materials were Y2O3 and Y3Al5O12 (YAG). There was a clear difference in the densities of the coatings due to the difference in solubility due to the melting point of the powdered material. As a plasma environment, a mixed gas of CF4, O2, and Ar was used, and the etching process was performed at 200 W for 60 min. After the plasma etching process, a fluorinated film was formed on the surface, and it was confirmed that the plasma resistance was lowered and contaminant particles were generated. We performed a surface cleaning process using piranha solution(H2SO4(3):H2O2(1)) to remove the defect-causing surface fluorinated film. APS-Y2O3 and APS-YAG coatings commonly increased the number of defects (pores, cracks) on the coating surface by plasma etching and cleaning processes. As a result, it was confirmed that the generation of contamination particles increased and the breakdown voltage decreased. In particular, in the case of APS-YAG under the same cleaning process conditions, some of the fluorinated film remained and surface defects increased, which accelerated the increase in the number of contamination particles after cleaning. These results suggest that contaminating particles and the breakdown voltage that causes defects in semiconductor devices can be controlled through the optimization of the APS coating process and cleaning process.

Microstructure and Tribological Characteristics of AlSi-Al$_2$O$_3$ Composite Coating Prepared by Plasma Spray (플라즈마 용사에 의한 AlSi-Al$_2$O$_3$ 복합재료 코팅층의 미세조직 및 마찰.마모특성)

  • Min Joon-Won;Yoo Seung-Eul;Kim Young-Jung;Suhr Dong-Soo
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.46-52
    • /
    • 2004
  • AlSi-Al$_2$O$_3$ composite layer was prepared by plasma spray on steel substrate. The composite powder for plasma spray was prepared by simple mechanical blending. The wear resistance of the composite layers and matrix aluminum alloy were performed in terms of size distribution of ceramic particles. Friction coefficients of AlSi were decreased with incorporation of $Al_2$O$_3$. The tribological properties of coated layers were affected by the size of incorporated $Al_2$O$_3$ particle. The reinforcement of $Al_2$O$_3$ particle into aluminum alloy matrix decreased the friction coefficient as well as wear loss.

Evaluation of Wear Chracteristics for $Al_2O_3-40%TiO_2$Sprayed on Casted Aluminum Alloy (주조용 알루미늄 합금의 $Al_2O_3-40%TiO_2$ 용사층에 대한 마멸특성 평가)

  • 채영훈;김석삼
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • The wear behavior of $Al_2$O$_3$-40%TiO$_2$deposited on casted aluminum alloy (ASTM A356) by APS (Air Plasma Spray) against SiC ball has been investigated in this work. Wear tests were carried out at room temperature. The friction coefficient of $Al_2$O$_3$-40%TiO$_2$coating is lower than that of pure $Al_2$O$_3$coating(APS). $Al_2$O$_3$-40%TiO$_2$coating indicated the existence of the optimal coating thickness. It is found that voids and pores of coating surface resulted in the generation of cracks, and the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tension and compression under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. The crack propagation above interface is observed in SEM.

Fabrication and Characteristics of Yttria-stabilized Zirconia (7.5 wt% Y2O3-ZrO2) Coating Deposited via Suspension Plasma Spray (서스펜션 플라즈마 용사를 이용한 이트리아 안정화 지르코니아 (7.5 wt% Y2O3-ZrO2) 코팅 증착 및 특성)

  • Lee, Won-Jun;Kwon, Chang-Sup;Kim, Seongwon;Oh, Yoon-Suk;Kim, Hyung-Tae;Lim, Dae-Soon
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.445-452
    • /
    • 2013
  • Yttria-stabilized zirconia (YSZ) coatings are fabricated via suspension plasma spray (SPS) for thermal barrier applications. Three different suspension sets are prepared by using a planetary mill as well as ball mill in order to examine the effect of starting suspension on the phase evolution and the microstructure of SPS prepared coatings. In the case of planetary-milled commercial YSZ powder, a deposited thick coating turns out to have a dense, vertically-cracked microstructure. In addition, a dense YSZ coating with fully developed phase can be obtained via suspension plasma spray with suspension from planetary-milled mixture of $Y_2O_3$ and $ZrO_2$.

The biocompatibility and mechanical properties of plasma sprayed zirconia coated abutment

  • Huang, Zhengfei;Wang, Zhifeng;Yin, Kaifeng;Li, Chuanhua;Guo, Meihua;Lan, Jing
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.157-166
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the clinical performance and reliability of plasma sprayed nanostructured zirconia (NSZ) coating. MATERIALS AND METHODS. This study consisted of three areas of analysis: (1) Mechanical property: surface roughness of NSZ coating and bond strength between NSZ coating and titanium specimens were measured, and the microstructure of bonding interface was also observed by scanning election microscope (SEM). (2) Biocompatibility: hemolysis tests, cell proliferation tests, and rat subcutaneous implant test were conducted to evaluate the biocompatibility of NSZ coating. (3) Mechanical compatibility: fracture and artificial aging tests were performed to measure the mechanical compatibility of NSZ-coated titanium abutments. RESULTS. In the mechanical study, 400 ㎛ thick NSZ coatings had the highest bond strength (71.22 ± 1.02 MPa), and a compact transition layer could be observed. In addition, NSZ coating showed excellent biocompatibility in both hemolysis tests and cell proliferation tests. In subcutaneous implant test, NSZ-coated plates showed similar inflammation elimination and fibrous tissue formation processes with that of titanium specimens. Regarding fatigue tests, all NSZ-coated abutments survived in the five-year fatigue test and showed sufficient fracture strength (407.65-663.7 N) for incisor teeth. CONCLUSION. In this study, the plasmasprayed NSZ-coated titanium abutments presented sufficient fracture strength and biocompatibility, and it was demonstrated that plasma spray was a reliable method to prepare high-quality zirconia coating.

Fabrication and Microstructure of Hydroxyapatite Coating Layer by Plasma Spraying (플라즈마 용사법에 의한 Hydroxyapatite코팅층의 제조와 미세구조)

  • 이치우;오익현;이형근;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.259-265
    • /
    • 2004
  • The microstructure of nano-sized hydroxyapatite (HAp) powders coating layer on ZrO$_2$ substrate was investigated, which was formed by plasma spray process. The nano-sized HAp powders were successfully synthesized by precipitation of Ca(NO$_3$)$_2$$.$4H$_2$O and (NH$_4$)$_2$HPO$_4$ solution. The HAp coating layer with thickness of 150∼250 $\mu\textrm{m}$ was free from the cracks at interfaces between the coating and ZrO$_2$ substrate. In the plasma sprayed HAp coating layer, the undesirable phases were not found, while in the HAp coating layer heat-treated at 800$^{\circ}C$, TTCP, and ${\beta}$-TCP phase were detected as well as HAp phase. However, at 900$^{\circ}C$, they were completely disappeared. At 1100$^{\circ}C$, XRD analysis revealed that the coating layer was composed of the highly crystallized HAp.

Improvement of Powder Feeding Characteristics of Fine$5\mu\textrm{m}$ $Al_2O_3$ Powder by Modification of the Powder Feeding Systems and Characterization of the Coating Layer depending on Plasma Spraying Conditions (분말송급장치의 개조에 의한 미세$5\mu\textrm{m}$ $Al_2O_3$분말의 송급 특성개선 및 플라즈마 용사조건에 따른 코팅층의 특성분석)

  • 설동욱;김병희;정민석;임영우;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.116-124
    • /
    • 1997
  • A scope of this study is to establish the optimum plasma spray conditions for fine ($5\mu\textrm{m}$) $Al_2O_3$ powder. However, the flowability of the $Al_2O_3$ powder is not so good because of irregular particle shape and fine particle size. Therefore, powder feeding system was modified by 1) change of powder feeding line material from polymer to copper 2) shorten the powder feeding tube length 3) heating the powder feeding system to $80^{\circ}C$4) vibrating the powder feeding line continuously, in order to feed the fine powder homogeneously. The homogeneous powder feeding conditions were obtained with the modified powder feeding system by controlling the powder carrier gas flow and the powder flow rate indicator. The best plasma spraying conditions for the fine $Al_2O_3$ powder were found out as 40kw gun power, 80 g/min. powder feed rate and 50 mm working distance after characterizing the microstructure, hardness and wear loss of the $Al_2O_3$ coating layer.

  • PDF