• Title/Summary/Keyword: Plasma Enhanced Chemical Vapor Deposition

Search Result 615, Processing Time 0.028 seconds

Synthesis of Diamond-Like Carbon Films on a TiO₂ Substrate by DC-Discharge Plasma Enhanced Chemical Vapor Deposition

  • 구수진;김창민;지종기
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.813-818
    • /
    • 1995
  • A diamond-like carbon (DLC) film was produced on a TiO2 substrate using a plasma enhance chemical vapor deposition (PECVD) method. The CH4-H2 plasma was produced by applying 400 V DC. The DLC film with the best crystalline structure was obtained when the concentration of CH4 in H2 was 0.75 percent by volume and total pressure was 40 torr. The presence of the diamond structure was confirmed by Raman spectroscopy, X-ray diffraction, and scanning electron microscopy methods. It was found that the diluting gas H2 played an important role in producing a DLC film using a PECVD method.

Thin Film Characterization on Refractive Index of PECVD SiO2 Thin Films

  • Woo Hyuck Kong;In Cheon Yoon;Seung Jae Lee;Yun Jeong Choi;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.35-39
    • /
    • 2023
  • Silicon oxide thin films have been deposited by plasma-enhanced chemical vapor deposition in SiH4 and N2O plasma along the variation of the gas flow ratio. Optical emission spectroscopy was employed to monitor the plasma and ellipsometry was employed to obtain refractive index of the deposited thin film. The atomic ratio of Si, O, and N in the film was obtained using XPS depth profiling. Fourier Transform Infrared Spectroscopy was used to analyze structures of the films. RI decreased with the increase in N2O/SiH4 gas flow ratio. We noticed the increase in the Si-O-Si bond angles as the N2O/SiH4 gas flow ratio increased, according to the analysis of the Si-O-Si stretching peak between 950 and 1,150 cm-1 in the wavenumber. We observed a correlation between the optical emission intensity ratio of (ISi+ISiH)/IO. The OES intensity ratio is also related with the measured refractive index and chemical composition ratio of the deposited thin film. Therefore, we report the added value of OES data analysis from the plasma related to the thin film characteristics in the PECVD process.

  • PDF

Synthesis of transparent diamond-like carbon film on the glass by radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD법에 의한 투명 다이아몬드상 탄소 박막 합성)

  • Kim, Tae-Gyu;Shin, Yeong-Ho;Cho, Hyun;Kim, Jin-Kon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.190-193
    • /
    • 2012
  • Transparent diamond-like carbon (DLC) films were synthesized on glass using radio frequency plasma enhanced chemical vapor deposition method from the gas mixture of $CH_4$, $SiH_4$ and Ar. The pressure, the rf-power, $CH_4/SiH_4/Ar$ ratio, and the deposition time were 0.1Torr, 100W, 20 : 1 : 1, and 20 min, respectively. The optical transmittances of DLC-deposited glass and uncoated glass were compared with each other in the visible light regions. The DLC-deposited glass showed transmittance of approximately 83 % and 95 % as compared to the uncoated glass for the wavelength of 380 nm and 500 nm, respectively. The hardness and roughness of DLC-coated glass have been measured by nanoindentation and AFM, respectively. The DLC-coated glass showed a little less or similar optical transmittance compared to the uncoated glass, while the hardness of DLC-coated glass was 2.5 times higher than that of the uncoated glass. The deposited DLC film had the very smooth surface and was thicker than 150 nm after deposition for 20 min.

Visible Photoluminescence from Hydrogenated Amorphous Silicon Substrates by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition (ECR-PECVD로 증착한 a-Si : H/Si으로 부터의 가시 PHotoluminescence)

  • Shim, Cheon-Man;Jung, Dong-Geun;Lee, Ju-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.359-361
    • /
    • 1998
  • Visible photoluminescence(PU was observed from hydrogenated amorphous silicon deposited on silicon(a-Si : H/Si) using electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR- PECVD) with silane ($SiH_{4}$) gas as the reactant source. The PL spectra from a-Si : H/Si were very similar to those from porous silicon. Hydrogen contents of samples annealed under oxygen atmosphere for 2minutes at $500^{\circ}C$ by rapid thermal annealing were reduced to 1~2%, and the samples did not show visible PL, indicating that hydrogen has a very important role in the PL process of a- Si : H/Si. As the thickness of deposited a-Si : H film increased, PL intensity decreased. The visi¬ble PL from a-Si: H deposited on Si by ECR-PECVD with $SiH_{4}$ . is suggested to be from silicon hydrides formed at the interface between the Si substrate and the deposited a-Si : H film during the deposition.

  • PDF

Fabrication of BSCCO Films using CVD Process

  • Lee, Sang-Heon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.158-160
    • /
    • 2004
  • BiSrCaCuO thick films were fabricated by plasma enhanced chemical vapor deposition, and the crystallinity and the superconducting properties were investigated. The superconductivity was achieved at 20 K with an onset temperature of around 90 K in the film prepared at 72$0^{\circ}C$. From X ray diffraction analysis, the main superconducting phase in the films was the low Tc phase at 700∼75$0^{\circ}C$ and the high Tc phase at 750 ∼ 80$0^{\circ}C$.

Low Temperature PECVD for SiOx Thin Film Encapsulation

  • Ahn, Hyung June;Yong, Sang Heon;Kim, Sun Jung;Lee, Changmin;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.198.1-198.1
    • /
    • 2016
  • Organic light-emitting diode (OLED) displays have promising potential to replace liquid crystal displays (LCDs) due to their advantages of low power consumption, fast response time, broad viewing angle and flexibility. Organic light emitting materials are vulnerable to moisture and oxygen, so inorganic thin films are required for barrier substrates and encapsulations.[1-2]. In this work, the silicon-based inorganic thin films are deposited on plastic substrates by plasma-enhanced chemical vapor deposition (PECVD) at low temperature. It is necessary to deposit thin film at low temperature. Because the heat gives damage to flexible plastic substrates. As one of the transparent diffusion barrier materials, silicon oxides have been investigated. $SiO_x$ have less toxic, so it is one of the more widely examined materials as a diffusion barrier in addition to the dielectric materials in solid-state electronics [3-4]. The $SiO_x$ thin films are deposited by a PECVD process in low temperature below $100^{\circ}C$. Water vapor transmission rate (WVTR) was determined by a calcium resistance test, and the rate less than $10.^{-2}g/m^2{\cdot}day$ was achieved. And then, flexibility of the film was also evaluated.

  • PDF

Deposition of a-SiN:H by PECVD (PECVD에 의한 질화 실리콘 박막의 증착)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2095-2099
    • /
    • 2007
  • In this paper, the optimum amorphous silicon nitride thin film is deposited using plasma enhanced chemical vapor deposition(PECVD). Amorphous silicon nitride is deposited using $SiH_4$ and $NH_3$ gas. At this time, electrical and optical characteristics of amorphous silicon nitride and deposition rate are changed under deposition condition such as $SiH_4$, $NH_3$ and $N_2$ gas flow rate, chamber pressure, rf power and substrate temperature. From the experimental results, we can estimate that the deposition condition makes a good electrical characteristic of amorphous silicon nitride thin film.

The Formation of Microcrystalline SiGe Film Using a Remote Plasma Enhanced Chemical Vapor Deposition (원격 플라즈마 화학기상 증착법으로 성장된 미세 결정화된 SiGe 박막 형성)

  • Kim, Doyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.320-323
    • /
    • 2018
  • SiGe thin films were deposited by remote plasma enhanced chemical vapor deposition (RPE-CVD) at $400^{\circ}C$ using $SiH_4$ or $SiCl_4$ and $GeCl_4$ as the source of Si and Ge, respectively. The growth rate and the degree of crystallinity of the fabricated films were characterized by scanning electron microscopy and Raman analysis, respectively. The optical and electrical properties of SiGe films fabricated using $SiCl_4$ and $SiH_4$ source were comparatively studied. SiGe films deposited using $SiCl_4$ source showed a lower growth rate and higher crystallinity than those deposited using $SiH_4$ source. Ultraviolet and visible spectroscopy measurement showed that the optical band gap of SiGe is in the range of 0.88~1.22 eV.

Catalytic growth of carbon nanotubes using plasma enhanced chemical vapor deposition(PECVD) (플라즈마 화학 증착법을 이용한 탄소나노튜브의 촉매 성장에 관한 연구)

  • 정성회;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.935-938
    • /
    • 2001
  • Carbon nanotubes(CNTs) was successfully grown on Ni coated silicon wafer substrate by applying PECVD technique(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni thin film of thickness ranging from 15∼30nm was prepared by electron beam evaporator method. In order to find the optimum growth condition, the type of the gas mixture such as C$_2$H$_2$-NH$_3$was systematically investigated by adjusting the gas mixing ratio in temperature of 600$^{\circ}C$ under the pressure of 0.4 torr. The diameter of the grown CNTs was 40∼150nm. As NH$_3$etching time increased the diameters of the nanotubes decreased whereas the density of nanotubes increased. TEM images clearly demonstrated synthesized nanotubes was multiwalled. We investigated electrical properties for the application of FED.

  • PDF

Homeotropic Alignment Effect for Nematic Liquid Crystal on the $SiO_x$ Thin Film Layer by New Ion beam Exposure (새로운 이온빔을 이용한 $SiO_x$ 박막 표면의 액정 배향 효과)

  • Choi, Sung-Ho;Kim, Byoung-Yong;Han, Jin-Woo;Oh, Yong-Cheul;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.311-312
    • /
    • 2006
  • We studied homeotropic alignment effect for a nematic liquid crystal (NLC) on the $SiO_x$, thin film irradiated by the new ion beam method $SiO_x$ thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) and were treated by the DuoPIGatron ion source. A uniform liquid crystal alignment effect was achieved over 2100 eV ion beam energy. Tilt angle were about $90^{\circ}$ and were not affected by various ion beam energy.

  • PDF