Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.5.320

The Formation of Microcrystalline SiGe Film Using a Remote Plasma Enhanced Chemical Vapor Deposition  

Kim, Doyoung (School of Electrical and Electronics Engineering, Ulsan College)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.5, 2018 , pp. 320-323 More about this Journal
Abstract
SiGe thin films were deposited by remote plasma enhanced chemical vapor deposition (RPE-CVD) at $400^{\circ}C$ using $SiH_4$ or $SiCl_4$ and $GeCl_4$ as the source of Si and Ge, respectively. The growth rate and the degree of crystallinity of the fabricated films were characterized by scanning electron microscopy and Raman analysis, respectively. The optical and electrical properties of SiGe films fabricated using $SiCl_4$ and $SiH_4$ source were comparatively studied. SiGe films deposited using $SiCl_4$ source showed a lower growth rate and higher crystallinity than those deposited using $SiH_4$ source. Ultraviolet and visible spectroscopy measurement showed that the optical band gap of SiGe is in the range of 0.88~1.22 eV.
Keywords
Silicon germanium; Silicon chloride; Silane; Germanium chloride; Raman spectroscopy; Optical bandgap;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, Sol. Energy Mater. Sol. Cells, 62, 97 (2000). [DOI: https://doi.org/ 10.1016/S0927-0248(99)00140-3]   DOI
2 M. Faraji, S. Gokhale, S. M. Choudhari, and M. G. Takwale, Appl. Phys. Lett., 60, 3289 (1992). [DOI: https://doi.org/10.1063/ 1.106722]   DOI
3 Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, Appl. Phys. Lett., 89, 033506 (2006). [DOI: https:// doi.org/10.1063/1.2227629]   DOI
4 K. Ishizaki, A. Motohira, M. De Zoysa, Y. Tanaka, T. Umeda, and S. Noda, IEEE J. Photovoltaics, 7, 950 (2017). [DOI: https://doi.org/10.1109/JPHOTOV.2017.2695524]   DOI
5 G. H. Wang, C. Y. Shi, L. Zhao, H. W. Diao, and W. J. Wang, J. Alloys Compd., 658, 543 (2016). [DOI: https:// doi.org/10.1016/j.jallcom.2015.10.235]   DOI
6 A. S. Gudovskikh, A. V. Uvarov, I. A. Morozov, A. I. Baranov, D. A. Kudryashov, K. S. Zelentsov, A. S. Bukatin, and K. P. Kotlyar, J. Vac. Sci. Technol., A, 36, 02D408 (2018). [DOI: https://doi.org/10.1116/1.5018259]   DOI
7 X. Zhao, D. Li, T. Zhang, B. Conrad, L. Wang, A. H. Soeriyadi, J. Han, M. Diaz, A. Lochtefeld, A. Gerger, I. Perez-Wurfl, and A. Barnett, Sol. Energy Mater. Sol. Cells, 159, 86 (2017). [DOI: https://doi.org/10.1016/j.solmat.2016.08.037]   DOI
8 A. Fedala, C. Simon, N. Coulon, T. Mohammed-Brahim, M. Abdeslam, and A. C. Chami, Phys. Status Solidi C, 7, 762 (2010). [DOI: https://doi.org/10.1002/pssc.200982791]   DOI
9 M. Beaudoin, M. Meunier, and C. J. Arsenault, Phys. Rev. B, 47, 2197 (1993). [DOI: https://doi.org/10.1103/PhysRevB. 47.2197]   DOI
10 H. Meiling and R.E.I. Schropp, Appl. Phys. Lett., 70, 2681 (1987). [DOI: https://doi.org/10.1063/1.118992]   DOI
11 R. A. Street, D. K. Biegelsen, and J. C. Knights, Phys. Rev. B, 24, 969 (1981). [DOI: https://doi.org/10.1103/PhysRevB.24.969]   DOI