• 제목/요약/키워드: Plasma Cell

검색결과 1,583건 처리시간 0.036초

닭 및 산양의 이종plasma내에서 적혈구 침강에 대한 연구 (Studies on the red blood cell sedimention rates in heteroplasma of chicken and goat)

  • 유창준;이수두
    • 대한수의학회지
    • /
    • 제28권2호
    • /
    • pp.271-277
    • /
    • 1988
  • In order to study the marked variation of red blood cell sedimentation rate in some species of animals, the packed cell volume, volume percentage of erythrocytes in whole blood, was reshuffled of 20%, 40% and 60% using heteroplasma of chicken and goat, and the red blood cell sedimentation rate was measured in Westergren tubes at $27{\pm}1^{\circ}C$ and $8{\pm}1^{\circ}C$. The results obtained were summarized as follows: 1. The values of packed cell volume(PCV) of goat and chicken were $40.7{\pm}4.1%$ and $30.2{\pm}2.2%$ respectively. 2. The sedimentation rates of reshuffled red blood cell were settled faster at lower PCV than higher PCV, i.${\acute{e}}$. there was a reverse relationship between the sedimention rate and PCV. 3. Red blood cells of chicken settled quickly, where as those of goat settled very slowly. Chicken red blood cell sedimented rapidly even in goat plasma, and goat red blood cell sedimented slowly in chicken plasma. These findings indicate that the plasma is not the only factor determining the rapid red blood cell sedimentation rate of chicken. 4. The sedimentation rate of reshuffled red blood cell of chicken and goat were accelerated at higher temperature than lower temperature.

  • PDF

Nonthermal Atmospheric Pressure Plasmas and their Applications to Plasma Bioscience and Medicines

  • 최은하
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.56.2-56.2
    • /
    • 2015
  • Nonthermal Atmospheric Pressure Plasmas and their Applications to Plasma Bioscience and Medicines have been introduced for next generation human healthcare's quantum developments. Various kinds of nonthermal atmospheric pressure plasmas have been introduced and their electron temperature and plasma densities along with reactive oxygen and nitrogen species have been diagnosed and analyzed for biological cell interactions, especially, used in Plasma Bioscience Research Center (PBRC), Korea. Herein, we have also introduced the plasma-initiated ultraviolet photolysis, which might be a generation mechanism for the reactive oxygen and nitrogen species (RONS) intracellular and extracellular regions inside the liquid when the plasma has been bombarded onto the water. Finally we have investigated the interactions of these RONS with the various cancer cells resulting in apoptotic cell death.

  • PDF

Plasma Surface Modification of Patterned Polyurethane Acrylate (PUA) Film for Biomedical Applications

  • Yun, Young-Shik;Kang, Eun-Hye;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.223.2-223.2
    • /
    • 2015
  • Polyurethane acrylate (PUA) has been introduced to utilize as a mold material for sub-100 nm lithography as it provides advantages of stiffness for nanostructure formation, short curing time, flexibility for large area replication and transparency for relevant biomedical applications. Due to the ability to fabricate nanostructures on PUA, there have been many efforts to mimic extracellular matrix (ECM) using PUA especially in a field of tissue engineering. It has been demonstrated that PUA is useful for investigating the nanoscale-topographical effects on cell behavior in vitro such as cell attachment, spreading on a substrate, proliferation, and stem cell fate with various types of nanostructures. In this study, we have conducted surface modification of PUA films with micro/nanostructures on their surfaces using plasma treatment. In general, it is widely known that the plasma treated surface increases cell attachment as well as adsorption of ECM materials such as fibronectin, collagen and gelatin. Effect of plasma treatment on PUA especially with surface of micro/nanostructures needs to be understood further for its biomedical applications. We have evaluated the modified PUA film as a culture platform using adipose derived stem cells. Then, the behavior of stem cells and the level of adsorbed protein have been analyzed.

  • PDF

Intracranial Plasma Cell Granuloma

  • Kim, Dae-Jin;Choi, Yu-Seok;Song, Young-Jin;Kim, Ki-Uk
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권2호
    • /
    • pp.161-164
    • /
    • 2009
  • Plasma cell granuloma is a tumor-like disease characterized by non-neoplastic polyclonal proliferation of plasma cells and other mononuclear cells. This disease occurs most frequently in the lung and upper respiratory tract, while the involvement of the central nervous system is very rare. A 44-year-old female patient presented with nausea and progressive visual disturbance. Brain magnetic resonance imaging (MRI) revealed the mass along the right tentorium with low signal intensity in the T2 weighted image (T2WI) and fluid-attenuated inversion recovery (FLAIR) sequence, and an isosignal intensity in T1 weighted image (T1WI), the latter of which was enhanced after administration of gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA). The thickest portion of the tentorium was partially excised via the combined suboccipital and infratentorial approach. The histopathological examination indicated a diagnosis of plasma cell granuloma. Postoperative steroid therapy was administered for remnant tumor control. Although a follow up MRI scan taken 20 months after the operation showed a slight decrease in tumor size, the lesion had extended to the falx and left frontal convexity along with parenchymal edema at 32 months after the operation and the clinical status was aggravated. The mass was removed from the left frontal convexity. Radiation therapy was given, together with steroid administration.

Early Growth Response-1 Plays a Non-redundant Role in the Differentiation of B Cells into Plasma Cells

  • Oh, Yeon-Kyung;Jang, Eunkyeong;Paik, Doo-Jin;Youn, Jeehee
    • IMMUNE NETWORK
    • /
    • 제15권3호
    • /
    • pp.161-166
    • /
    • 2015
  • Early growth response (Egr)-1 is a $Cys_2-His_2-type$ zincfinger transcription factor. It has been shown to induce survival and proliferation of immature and mature B cells, respectively, but its role in the differentiation of B cells into plasma cells remains unclear. To examine the effects of Egr-1 deficiency on the activation of B cells, naive B cells from $Egr1^{-/-}$mice and their wild-type (WT) littermates were activated to proliferate and differentiate, and then assayed by FACS. Proportions of cells undergoing proliferation and apoptosis did not differ between $Egr1^{-/-}$ and WT mice. However, $Egr1^{-/-}$ B cells gave rise to fewer plasma cells than WT B cells. Consistently, $Egr1^{-/-}$ mice produced significantly lower titer of antigen-specific IgG than their WT littermates upon immunization. Our results demonstrate that Egr-1 participates in the differentiation program of B cells into plasma cells, while it is dispensable for the proliferation and survival of mature B cells.

새로운 대기압 플라즈마 소스를 이용한 결정질 실리콘 태양전지 인(P) 페이스트 도핑에 관한 연구 (A Study on Feasibility of the Phosphoric Paste Doping for Solar Cell using Newly Atmospheric Pressure Plasma Source)

  • 조이현;윤명수;조태훈;노준형;전부일;김인태;최은하;조광섭;권기청
    • 신재생에너지
    • /
    • 제9권2호
    • /
    • pp.23-29
    • /
    • 2013
  • Furnace and laser is currently the most important doping process. However furnace is typically difficult appling for selective emitters. Laser requires an expensive equipment and induces a structural damage due to high temperature using laser. This study has developed a new atmospheric pressure plasma source and research atmospheric pressure plasma doping. Atmospheric pressure plasma source injected Ar gas is applied a low frequency (a few 10 kHz) and discharged the plasma. We used P type silicon wafers of solar cell. We set the doping parameter that plasma treatment time was 6s and 30s, and the current of making the plasma is 70 mA and 120 mA. As result of experiment, prolonged plasma process time and highly plasma current occur deeper doping depth and improve sheet resistance. We investigated doping profile of phosphorus paste by SIMS (Secondary Ion Mass Spectroscopy) and obtained the sheet resistance using generally formula. Additionally, grasped the wafer surface image with SEM (Scanning Electron Microscopy) to investigate surface damage of doped wafer. Therefore we confirm the possibility making the selective emitter of solar cell applied atmospheric pressure plasma doping with phosphorus paste.

High-Efficiency a-Si:H Solar Cell Using In-Situ Plasma Treatment

  • Han, Seung Hee;Moon, Sun-Woo;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok;Lee, Seungmin;Kim, Jungsu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.230-230
    • /
    • 2013
  • In amorphous or microcrystalline thin-film silicon solar cells, p-i-n structure is used instead of p/n junction structure as in wafer-based Si solar cells. Hence, these p-i-n structured solar cells inevitably consist of many interfaces and the cell efficiency critically depends on the effective control of these interfaces. In this study, in-situ plasma treatment process of the interfaces was developed to improve the efficiency of a-Si:H solar cell. The p-i-n cell was deposited using a single-chamber VHF-PECVD system, which was driven by a pulsed-RF generator at 80 MHz. In order to solve the cross-contamination problem of p-i layer, high RF power was applied without supplying SiH4 gas after p-layer deposition, which effectively cleaned B contamination inside chamber wall from p-layer deposition. In addition to the p-i interface control, various interface control techniques such as thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, multiple applications of thin i-layer deposition and H2 plasma treatment, H2 plasma treatment of i-layer prior to n-layer deposition, etc. were developed. In order to reduce the reflection at the air-glass interface, anti-reflective SiO2 coating was also adopted. The initial solar cell efficiency over 11% could be achieved for test cell area of 0.2 $cm^2$.

  • PDF

Interactions of Low-Temperature Atmospheric-Pressure Plasmas with Cells, Tissues, and Biomaterials for Orthopaedic Applications

  • Hamaguchi, Satoshi
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.20-20
    • /
    • 2011
  • It has been known that, under certain conditions, application of low-temperature atmospheric-pressure plasmas can enhance proliferation of cells. In this study, conditions for optimal cell proliferation were examined for various cells relevant for orthopaedic applications. Plasmas used in our experiments were generated by dielectric barrier discharge (DBD) with a helium flow (of approximately 3 litter/min) into ambient air at atmospheric pressure by a 10 kV~20 kHz power supply. Such plasmas were directly applied to a medium, in which cells of interest were cultured. The cells examined in this study were human synoviocytes, rat mesenchymal stem cells derived from bone marrow or adipose tissue, a mouse osteoblastic cell line (MC3T3-E1), a mouse embryonic mesenchymal cell line (C3H-10T1/2), human osteosarcoma cells (HOS), a mouse myoblast cell line (C2C12), and rat Schwann cells. Since cell proliferation can be enhanced even if the cells are not directly exposed to plasmas but cultured in a medium that is pre-treated by plasma application, it is surmised that long-life free radicals generated in the medium by plasma application stimulate cell proliferation if their densities are appropriate. The level of free radical generation in the medium was examined by dROMs tests and correlation between cell proliferation and oxidative stress was observed. Other applications of plasma medicine in orthopaedics, such as plasma modification of artificial bones and wound healing effects by direct plasma application for mouse models, will be also discussed. The work has been done in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  • PDF

열 플라스마 용사법에 의해 코팅된 SOFC 용 세라믹 연결재인 $La_{0.8}Ca_{0.2}CrO_3$ 특성 연구 (Characterization and Preparation of $La_{0.8}Ca_{0.2}CrO_3$ Ceramic Interconnect Prepared by Thermal Plasma Spray Coating Process for SOFC)

  • 박광연;임탁형;이승복;박석주;송락현;신동렬
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.201-206
    • /
    • 2010
  • In present work, $La_{0.8}Ca_{0.2}CrO_3$ (LCC) ceramic interconnect layer for SOFC was prepared by using thermal plasma spray coating process. The LCC powders were synthesized by Pechini method and calcined at the temperature of $1000^{\circ}C$. The prepared LCC powder was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), particle counter, BET analysis, respectively. In addition, basic and essential properties of LCC layer coated by thermal plasma spray coating process such as the morphology of surface and cross section for coated layer, gas leak rate, and electrical conductivity were analyzed and discussed. Based on these experimental results, it can be concluded that the LCC layer coated by thermal plasma spray coating process can be suitable as a ceramic interconnect of SOFC operated at $800^{\circ}C$.

Identification of Phospholipase C Activated by $GTP{\gamma}S$ in Plasma Membrane of Oat Cell

  • Kim, Hyae-Kyeong;Park, Moon-Hwan;Chae, Quae
    • BMB Reports
    • /
    • 제28권5호
    • /
    • pp.387-391
    • /
    • 1995
  • In order to investigate whether phospholipase C (PLC) activity in oat celIs is regulated by Gprotein, we have characterized PLC in plasma membranes of oat tissues. To identify the purified plasma membrane, $K^+$-stimulated, $Mg^{2+}$-dependent ATPase activity was measured. The activity of ATPase was shown to be proportional to the concentration of membrane protein. To examine the PLC activity regulated by G-protein, we used the inside-out and outside-out plasma membrane mixture isolated from the oat cells. The plasma membrane mixture showed higher PLC activity than the one of the outside-out plasma membrane. This suggests that PLC activity is located at the cytoplasmic surface of plasma membrane. PLC activity in plasma membrane mixture was dependent on $Ca^{2+}$ with maximum activity at 100 ${\mu}m$ $Ca^{2+}$ and it was inhibited by 1 mM EGTA. Using Sep-pak $Accell^{TM}$ Plus QMA chromatography, we found that inositol 1,4,5-trisphosphate ($IP_3$) was produced in the presence of 10 ${\mu}m$ $Ca^{2+}$. The PLC activity in the membrane was enhanced by an activator of G-protein ($GTP{\gamma}S$) and not by an inhibitor ($GDP{\beta}S$). This indicates that a G-protein is involved in the activation of PLC in the plasma membrane of oat cells.

  • PDF