• Title/Summary/Keyword: Plantlets

Search Result 553, Processing Time 0.027 seconds

Plant Regeneration through Somatic Embryogenesis from Mature Zygotic Embryos of Ginseng(Panax ginseng C. A. Meyer) and Flowering of Plantlets (인삼(Panax ginseng C. A. Meyer)의 성숙한 배로부터 체세포 배발생을 통한 구분화 및 유식물체의 개화)

  • 이행순
    • Journal of Plant Biology
    • /
    • v.32 no.3
    • /
    • pp.145-150
    • /
    • 1989
  • Mature zygotic embryos dissected from ginseng(Panax ginseng C. A. Meyer) seeds were cultured on Murashige and Skoog's (MS) medium containing various concentrations of 2, 4-dichlorophenoxyacetic acid(2, 4-D) and kinetin. Somatic embryos were induced directly from cotyledonary tissue or from intervening callus. The induction frequency of somatic embryos was up to 55%. Upon transfer to half-strength MS medium supplemented with 1 mg/1 6-benzyladenine(BA) and 1 mg/1 GA3, most somatic embryos developed into plantlets. Over 50% of the plantlets flowered after 4 weeks of culture and then a few bore immature fruits in vitro. Therefore, it is suggested that the juvenility of the ginseng tissue which give rise to somatic embryos does not interfere with in vitro flowering of their regenerated plantlets.

  • PDF

Effect of dark incubation in germination of indirect date palm somatic embryos and conversion into plantlets

  • Mansour Abohatem;Yousra Al-Qubati;Hanan Abohatem
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.267-274
    • /
    • 2023
  • All studies on date palm somatic embryogenesis have focused on germination in the presence of light while neglecting germination in darkness, which mimics the germination process of zygotic embryos within seeds. To improve the date palm micropropagation protocol, we investigated the effects of light and darkness incubation on the germination of indirect date palm somatic embryos and their subsequent conversion into plantlets. Darkness incubation emerged as a pivotal factor in the germination of indirect date palm somatic embryos and their successful conversion into plantlets. Darkness incubation significantly decreased the time required for the conversion of indirect somatic embryos into plantlets, halving the duration from 24 weeks to only 12 weeks. The micropropagation protocol was modified, consolidating the previous two distinct stages of germination and elongation under light incubation into a single stage under darkness incubation. These findings modified the protocol and significantly reduced the overall duration of the date palm micropropagation protocol.

Variation of the Regenerated Plantlets from in Vitro Culture of Neoregeria carorinae 'Tricolor' and in Vivo Growth of Regenerated Plantlets (네오레게리아 기내배양시 변이발생과 기외 생육)

  • 정향영;한봉희;신학기;김의영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.5
    • /
    • pp.273-276
    • /
    • 1995
  • In vitro propagation of Neoregeria carorinae 'Tricolor' was achieved by using immature flowers and lateral buds, and the plantlets from tissue culture were transplanted and cultivated in greenhouse. The picking times of explants to decrease disappearance of stripes, and in vivo the growth and flowering of regenerated plantlets as influenced by in vivo healed nun were investigated. The normal plantlet were obtained at a frequency of 67%, in the culture of immature flowers picked at 4 weeks after flower bud differentiation, while all leaf stripes disappeared in the culture of immature flowers picked 1 and 5 weeks after flower bud differentiation. In vivo growth of plantlet from immature flower buds was better than those from lateral buds, and the flowering of 27.8% showed in the greenhouse culture of plantlet from immature culture, but the plantlets from lateral buds did not flower at all. The plantlets rooted on the medium with 0.5 mg/L IBA were the most favorable in green house culture, and the kinds and concentrations of auxin in vitro did not have any influence on variation of plane cultured in greenhouse.

  • PDF

Acclimatization and Growth Characteristics of Plantlets of Eleutherococcus senticosus Maxim Cultured by Bioreactor (생물반응기에서 배양한 가시오갈피 유식물체의 순화 및 생육특성)

  • Li, Cheng-Hao;Lim, Jung-Dae;Kim, Myong-Jo;Kim, Na-Young;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.4
    • /
    • pp.133-137
    • /
    • 2005
  • Experiments were conducted to find the optimal acclimatization conditions for Eleutherococcus senticosus plantlets regenerated from bioreactor cultured somatic embryos, various acclimatizing conditions were compared regarding both survival rate and growth of the plantlets. Among the various temperature and artificial soil tested, the highest survival rate (88%) was observed when plantlets were acclimatized in Klasmann bed soil at $10^{\circ}C$ When in vitro plantlets directly transplanted to field environment, shading treatment was necessary and 50% shading was more effective than 30% shading. Transplanting season were also important for successful acclimatization of in vitro cultured plantlets, transplanted on March 20 with 50% shading exhibited the best survival rate and further growth.

Metabolic engineering of Lilium ${\times}$ formolongi using multiple genes of the carotenoid biosynthesis pathway

  • Azadi, Pejman;Otang, Ntui Valentaine;Chin, Dong Poh;Nakamura, Ikuo;Fujisawa, Masaki;Harada, Hisashi;Misawa, Norihiko;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.269-280
    • /
    • 2010
  • Lilium ${\times}$ formolongi was genetically engineered by Agrobacterium-mediated transformation with the plasmid pCrtZW-N8idi-crtEBIY, which contains seven enzyme genes under the regulation of the CaMV 35S promoter. In the transformants, ketocarotenoids were detected in both calli and leaves, which showed a strong orange color. In transgenic calli, the total amount of carotenoids [133.3 ${\mu}g/g$ fresh weight (FW)] was 26.1-fold higher than in wild-type calli. The chlorophyll content and photosynthetic efficiency in transgenic orange plantlets were significantly lowered; however, after several months of subculture, they had turned into plantlets with green leaves that showed significant increases in chlorophyll and photosynthetic efficiency. The total carotenoid contents in leaves of transgenic orange and green plantlets were quantified at 102.9 and 135.2 ${\mu}g/g$ FW, respectively, corresponding to 5.6- and 7.4-fold increases over the levels in the wild-type. Ketocarotenoids such as echinenone, canthaxanthin, 3'-hydroxyechinenone, 3-hydroxyechinenone, and astaxanthin were detected in both transgenic calli and orange leaves. A significant change in the type and composition of ketocarotenoids was observed during the transition from orange transgenic plantlets to green plantlets. Although 3'-hydroxyechinenone, 3-hydroxyechinenone, astaxanthin, and adonirubin were absent, and echinenone and canthaxanthin were present at lower levels, interestingly, the upregulation of carotenoid biosynthesis led to an increase in the total carotenoid concentration (+31.4%) in leaves of the transgenic green plantlets.

Development of Culture System for Masspropagation and Acclimatization of Tissue Cultured Plantlets (유식물체 증식.순화용 배양시스템 개발)

  • Han, K.S.;Heo, J.W.;Kim, S.C.;Lee, Y.B.;Kim, S.C.;Im, D.H.;Choi, H.G.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.109-114
    • /
    • 2007
  • In mass production of seed-potato plantlets, the processes for in vitro propagation and ex vitro acclimatization with a high cost should be improved by a culture system with environmental control using scaled-up culture vessels. The experiment was conducted to design a hydroponic culture system for enhancement of growth and development of seed-potato (Solanum tuberosum) plantlets cultured under photoautotrophic (without sugar in culture medium) conditions with controlled light intensity and ventilation rate. The culture system was consisted of scaled-up culture vessels, ventilation pipes, a multi-cell tray and an environmental control system (ECS) for optimum controlling in temperature, light intensity, ventilation rate, and culture-medium supply. Growth and development of the plantlets was significantly increased under the ECS compared with a conventional culture system (CCS) of photomixotrophic culture (with sugar in culture medium) using small scale vessels. For 21 days, leaf area of the plantlets was expanded more than 2 times, and number of internodes also approximately 4 times greate. under the ECS. In addition, the photoautotrophic growth in sweetpotato (Ipomoea batatas) and chrysanthemum (Chrysanthemum morifolium) plantlets was greater more than 2 times compared with the CCS.

Promoted Growth and Development of Carnation Plantlets In Vitro by Ventilation and Combined Red and Blue Light

  • Nguyen, Quan Hoang;Thi, Luc The;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.26 no.4
    • /
    • pp.166-178
    • /
    • 2018
  • In this study, the principal objective was to investigate the effect of light quality and vessel ventilation on the growth and development, physiology, activities of antioxidant enzymes, and contents of mineral nutrients of carnation (Dianthus caryophyllus L.) 'Marble Beauty'. Single node cuttings stuck into the plant growth regulator (PGR)-free MS medium in containers covered with caps with or without a ventilation filter were cultured first four weeks under white and then additional four weeks under either white (control), blue, red, or red + blue light emitting diodes (LEDs) for 56 days. Interestingly, a ventilated culture condition not only reduced the percentage of the hyperhydricity, but also increased the total chlorophyll content (Chl a + Chl b) of the plantlets as compared to the non-ventilated condition. In addition, blue LEDs produced plantlets with the greatest number of shoots and red LEDs produced plantlets with the greatest shoot length. The quality of plantlets was improved under a ventilation condition. Besides, under a ventilated condition, red + blue LEDs raised APX activity, and blue LEDs not only raised the activity of the CAT, but also increased tissue contents of such elements as K, Ca, Mg, Zn, Mn and Fe. The red LEDs increased contents of B and Si under a ventilated condition, and Na accumulation under a non-ventilated condition. Thus, including blue or red LEDs as the light source in a ventilated culture condition will produce plantlets of carnation 'Marble Beauty' in vitro with improved quality.

Survival and Early Growth of Populus alba × P. grandidentata In Vitro Culture Plantlets in Soil (Populus alba × P. grandidentata 조직배양묘(組織培養苗)의 토양(土壤)에서의 활착(活着)과 생장(生長))

  • Chun, Young Woo;Hall, Richard B.
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.1-7
    • /
    • 1984
  • This study was undertaken to find out the effects of three kinds of potting media and two sources of explants on the survival and early growth of new plantlets of Poputus alba ${\times}$ P. grandidentata in the greenhouse. The results obtained can be summarized as follows; 1) Among three potting media, Terralite was best for early growth and survival of plantlets. 2) Like humidifier, an intermittent misting system can be effective in keeping relative humidity high for the plantlets. 3) Survival rates over 80% could be obtained if humidity was kept high during the hardening period. 4) During hardening period, the plantlets showed the juvenile characteristics such as smaller leaves, thinner stems, and shorter internodes. 5) There were no differences on morphological characteristics between the plantlets originating from axillary buds and the plantlets originating from multiple shoots while they were growing at the greenhouse. 6) The plantlets originating from bud culture grew normally comparing to regular cuttings.

  • PDF

Growth Acceleration and Acclimatization of In Vitro Plantlets derived from Apical Meristem of Sweet Potato (고구마의 경정조직 유래 기내 소식물체의 생장촉진과 순화)

  • ;;Shiro Higashi
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.2
    • /
    • pp.115-119
    • /
    • 1999
  • The single node cuttings of sweet potato (cv. Mokpo #29) plantlets maintained in vitro were cultured with (MF+) or without membrane filter (MF-) under photomixotrophic (PM), hetrotrophic (HT) and autotrophic (AT) conditions. Shoot length was the greatest (11.9cm) in 3$0^{\circ}C$ (HT) treatment and it was the shortest (3.4 cm) in $25^{\circ}C$ (PM) treatment. Nodal explants cultured in 3$0^{\circ}C$ treatment looked more vigorous than those of $25^{\circ}C$ in appearance, and node number was the greatest (10.5 per plantlet) among the treatments. But plantlets grew in 3$0^{\circ}C$ (HT) treatment were observed all overgrown. The size in leaf area was about 2 times greater and shoot length was about 2 times shorter in PM than in HT condition. Percent dry matter of shoots was 5.9% (HT) and 7.4% (PM) in $25^{\circ}C$ treatment and 6.1% (HT) and 7.4% (PM) in 3$0^{\circ}C$ treatment. Plantlets cultured in the MF+ treatments were less succulent than those cultured in the MF- treatment. Vitrified plantlets were examinated 14.8% (both $25^{\circ}C$ and 3$0^{\circ}C$) in PM condition and 22.2% ($25^{\circ}C$) and 31.5% (3$0^{\circ}C$) in HT condition. Sucrose was necessary for the survival of in vitro plantlets. In the sucrose-free medium, explants cultured in the MF- had turned yellow and were dead after 30 days of culture. But explants cultured in the MF+ were alive and produced plantlets with shoot and root (AT). On the other hand, the survival of explants on the MS basal medium (sucrose-free and hormone-free) depended entirely upon the MF attachment.

  • PDF

Effects of Light-emitting Diodes on In Vitro Growth of Virus-free Sweet Potato Plantlets (LED가 고구마 바이러스 무병묘의 기내 생장에 미치는 영향)

  • Yoo, Kyoung-Ran;Lee, Seung-Yeob
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.490-498
    • /
    • 2017
  • The in vitro growth of virus-free sweet potato [Ipomoea batatas (L.) Lam.] plantlets was investigated under different light sources: fluorescent lamp (control); red (660 nm), blue (460 nm), white light-emitting diodes (LED), and two mixtures of blue and red LED (R:B = 8:2, and 7:3). Single node explants (10 mm) of three cultivars ('Matnami', 'Shincheonmi', and 'Yeonhwangmi') were cultured on Murashige and Skoog medium supplemented with $0.2mg{\cdot}L^{-1}$ 6-benzyladenine for 4 weeks. Explants were exposed to $150{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux at a distance of 20 cm, constant temperature of $25^{\circ}C$, and under 16/8-h (day/night) photoperiod. Using the same method, the in vitro growth of 10 cultivars under red LED was also compared. After 3 weeks, vine length was highest in plantlets cultured under red LED, and lowest in plantlets cultured under blue LED. Fresh and dry weights were also greatest in plantlets cultured under red LED. Compared to the control, vine thickness was significantly higher in plantlets grown under white LED and the 7:3 R:B LED mixture. Significant differences were observed among the 10 cultivars grown under red LED. 'Matnami', 'Shincheonmi', and 'Shinhwangmi' all had excellent vine lengths, and fresh and dry weights. Compared to the control, vine elongation of sweet potato plantlets was most effective under red LED, and culture duration was about 1 week shorter.