• Title/Summary/Keyword: Plantar pressure distribution

Search Result 75, Processing Time 0.028 seconds

Comparison Study of Static and Dynamic Plantar Foot Pressure between Chronic Low Back Pain Patients and Normal Adults (만성 요통 환자와 정상 성인의 정적, 동적 족저압 비교 연구)

  • Lee, Jeon-Hyeong;Kim, Gi-Chul;Seo, Hyun-Kyu;Park, Youn-Ki
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • Background: The purposed of this study is to examine the static and dynamic plantar foot pressure in chronic low back pain patients and normal adults. Methods: The subjects were divided into a group of 30 patients with chronic low back pain and a control group of 30 healthy persons. While static posture and dynamic posture at comfortable walking speeds, the low back pain group and the control group measured their plantar foot pressure and the trajectory of their center of pressure (COP) using the Matscan(R) system. Independent t-tests were measured to compare differences in plantar foot pressure characteristics between the left side and right side of the low back pain group and the control group. Results: In the comparison of differences in plantar foot pressure characteristics between the left side and right side of the low back pain group and the control group, the anteroposterior (AP) displacement of COP showed significant differences (p<.05). Although the low back pain group and the control group did not show any significant differences in leg length, weight distribution, mediolateral (ML) displacement of COP, static contract area, dynamic contract areas (p>.05), increases in the contract area values were shown in the hind foot in general. Conclusion: In this study, it was shown that patients with chronic low back pain were walking with short AP displacement of the COP as a compensatory action to avoid pain.

  • PDF

Effects of Walking Speed on Foot Joint Motion and Peak Plantar Pressure in Healthy Subjects (정상인에서 보행속도가 발관절의 관절각과 발바닥 최대 압력 분포에 미치는 영향)

  • Park, Kyung-Hee;Kwon, Oh-Yun;Kim, Young-Ho
    • Physical Therapy Korea
    • /
    • v.10 no.1
    • /
    • pp.77-95
    • /
    • 2003
  • Many factors affect foot and ankle biomechanics during walking, including gait speed and anthropometric characteristics. However, speed has not been taken into account in foot kinematics and kinetics during walking. This study examined the effect of walking speed on foot joint motion and peak plantar pressure during the walking phase. Eighty healthy subjects (40 men, 40 women) were recruited. Maximal dorsiflexion and excursion were measured at the first metatarsophalangeal joints during walking phase at three different cadences (80, 100, and 120 step/min) using a three dimensional motion analysis system (CMS70P). At the same time, peak plantar pressure was investigated using pressure distribution platforms (MatScan system) under the hallux heads of the first, second, and third metatarsal bones and heel. Maximal dorsiflexion and excursion and excursion at the ankle joint decreased significantly with increasing walking speed. Peak plantar pressure increased significantly under the heads of the first of the first, second, and third metatarsal bones, and heel with increasing walking speed: three was no change under the hallux. There were no significant changes in maximal dorsiflexion or excursion at the first metatarsophalangeal joint. The results show that walking speed should be considered when comparing gait parameters. The results also suggest that slow walking speeds may decrease forefoot peak plantar pressure in patients with peripheral neuropathy who have a high risk of skin breakdown under the forefoot.

  • PDF

The Effect of Stretching and Elastic Band Exercises Knee Space Distance and Plantar Pressure Distribution during Walking in Young Individuals with Genu Varum

  • Park, So-Ra;Ro, Hyo-Lyun;Namkoong, Seung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • PURPOSE: The purpose of this study was to investigate the effects of stretching and elastic band exercise on the knee space distance and plantar pressure distribution in people with genu varum. METHODS: The subjects of this study were students of a college who had genu varum of 14 subjects. The subjects were randomly divided into two groups as a stretching group (n=7, 4 males and 3 females, age: $20.14{\pm}2.54years$, height: $167.1{\pm}9.78cm$, weight: $58.6{\pm}10.13kg$) and a Thera-band group (n=7, 5 males and 2 females, age: $19.85{\pm}2.04years$, height: $166.5{\pm}5.82cm$, weight: $54.2{\pm}5.59kg$). The stretching and the There-band exercises were performed three times per a week, for four weeks. We measured changes in plantar pressure during walking, using a Gait Analyzer and distance of both knees at pre and post-intervention. RESULTS: These results suggest that the space distance of both knees showed differences before and after the intervention. The plantar pressure distribution was no changes in both groups before and after the intervention except for the left foot in a stretching group. CONCLUSION: As a result, the space distance of knees in both groups was significantly reduced. These result suggested that the Thera-band and stretching exercises were effective ways in alleviating genu varum.

The Effect of the Plantar Pressure on Dynamic Balance by Fatigue of Leg in the Subjects with Functional Ankle Instability (기능적 발목 불안정성시 하지 근피로에 의한 동적균형이 족저압에 미치는 영향)

  • Kim, Ho-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.734-742
    • /
    • 2016
  • Purpose : The present study was aimed at investigating the plantar pressure on dynamic balance of subjects with functional ankle instability following fatigue of lower leg. Methods : The subjects(30 university students) were divided into 2 groups ; functional ankle instability group(7males and 7females) and ankle stable group(9males & 7females) who could evaluate questionnaire. All the participants were evaluated muscle fatigue of lower leg by Biodex system III and distribution of plantar pressure by Zebris FDM-S system, The dynamic balance was tested by single-leg jump landing. This study were to measure of plantar pressure on dynamic balance with the difference between FAIG and control group following muscle fatigue. Results : In functional ankle instability group(FAIG), the post-fatigue was significantly higher than pre-fatigue in forefoot(p2,p3,p4) of plantar pressure on dynamic balance(p<0.05). The FAIG was significantly higher than the ASG in forefoot(p2, p3, p4) & lat midfoot(p6) of plantar pressure after fatigue in dynamic balance(p<0.05). The FAIG was significantly longer than the ASG in anteroposterior(AP) & mediolateral(ML) distance on center of pressure(CoP) after fatigue in dynamic balance(p<0.05). Conclusion : This study showed that FAIG were effected plantar pressure and center of pressure(CoP) by dynamic balance following muscle fatigue. Further study is needed to measure various age & work with ankle instability for clinical application.

Effect of Taping Therapy and Inner Arch Support on Plantar Lower Body Alignment and Gait

  • Lee, Sojung;Jeong, Dawun;Kim, Dong-Eun;Yi, Kyungock
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.229-238
    • /
    • 2017
  • Objective: The purpose of this study was to identify the effects of taping therapy and inner arch support on pes planus lower extremity alignment and gait. Method: The study was conducted on 13 women in their 20s who had pes planus and no gait problems. Independent variables were the condition of wearing basic socks (S1) and the condition of wearing socks with taping therapy and inner arch support (S2). The dependent variables were resting calcaneal stance position (RCSP), plantar pressure distribution during gait, and underlying and medial longitudinal arch angle measured using radiography. Statistical analysis was performed using the Wilcoxon test with SPSS 23.0 for comparison of S1 and S2. Results: In the RCSP measurement, the angle range of S2 changed to normal. Meary's angle appeared to be less than the angle of S1, indicating alleviation of the degree of pes planus. The calcaneal pitch angle increased at S2 from that at S1. The plantar pressure distribution was divided into four areas (toe, forefoot, midfoot, and hindfoot). At S2, the maximum pressure increased in the toe and midfoot. The maximum force increased significantly in the toe and midfoot but decreased significantly in the forefoot and hindfoot. In addition, the contact area increased overall especially at the midfoot and hindfoot. Contact time decreased in the toe and forefoot, but increased in the midfoot and hindfoot. Conclusion: Taping therapy and inner arch support showed structural improvement of the pes planus. In addition, the force and pressure applied to the foot during walking are distributed evenly in the area of the sole, thus positively affecting walking.

Evaluation of the Effect of Location and Direction of the Scoliotic Curve on Postural Balance of Patients with Idiopathic Scoliosis (특발성 척추측만증 환자의 척추 만곡 위치와 방향이 자세 균형에 미치는 영향성 평가)

  • Jung, Ji-Yong;Kim, Jung-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.341-348
    • /
    • 2017
  • This study examined the effects of the location and direction of the scolioti curve on postural balance in patients with idiopathic scoliosis. Fifteen subjects were divided into three groups: right thoracic curve group, left lumbar curve group, and double curve group. The dynamic trunk motion (angle variation in the lumbar, thoracolumbar, lower thoracic and upper thoracic region) and plantar pressure distribution (maximum force and peak pressure) were assessed using an ultrasound-based motion analysis system and Emed-at platform system. From the results, it was confirmed that patients with idiopathic scoliosis showed postural imbalance with an increased angle and pressure asymmetry according to the location and direction of the scoliotic curve for dynamic trunk motion and plantar pressure distribution. In addition, there were differences in the postural balance pattern between the single curve and double curve groups. Further studies for developing a rehabilitation training device will be conducted to improve the postural control ability and trunk balance as well as treat scoliosis based on the results of this study.

The Effects of Foot Intrinsic Muscle and Tibialis Posterior Strengthening Exercise on Plantar Pressure and Dynamic Balance in Adults Flexible Pes Planus

  • Lee, Da-bee;Choi, Jong-duk
    • Physical Therapy Korea
    • /
    • v.23 no.4
    • /
    • pp.27-37
    • /
    • 2016
  • Background: In previous studies regarding flexible pes planus, Foot orthosis, special shoes have been used as interventions for correcting malalignment and intrinsic muscles strengthening exercise have been regarded as interventions for foot function and supporting medial longitudinal arch during walking. However, some recent studies reported that strengthening extrinsic muscles as well as intrinsic muscles is more effective and active intervention for flexible pes planus. In particular, the tibialis posterior muscle of foot extrinsic muscles plays essential roles in maintaining the medial longitudinal arch during dynamic weight bearing and balance. In addition this muscle acts longer than other supination muscles during the stance phase in the gait cycle. Objects: This study aimed to investigate the effect of foot intrinsic muscle and tibialis posterior muscle strengthening exercise for plantar pressure and dynamic balance in adults with flexible pes planus. Methods: 16 young flexible pes planus adults (7 males, 9 females) were recruited and were randomized into two groups. The experimental group performed foot intrinsic muscle and tibialis posterior muscle strengthening training, the control group performed only foot intrinsic muscle strengthening training. All groups received strengthening training for 30 minutes five times a week for six weeks. Results: The experimental group had significantly lower plantar pressure of medial heel area than the control group in stand (p<.05). The experimental group had significantly higher dynamic balance ability than control group (p<.05). Conclusion: The results of this study provide evidence to suggest that foot intrinsic muscle and tibialis posterior muscle of extrinsic muscle strengthening exercises may improve plantar pressure distribution and dynamic balance ability in adults with flexible pes planus.

The Immediate Effects of Elastic Taping on Center of Pressure and Foot Pressure Distribution

  • Jung-Hee Kim;Jong-Ho Kook;Sang-Mi Lee;Eun-Bin Ko;Song-Yi Han;Yeon-Jeong Kim;Byeong-Jun Min
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • Purpose: Ankle instability is a common issue in both daily activities and sports, often leading to recurrent injuries. Elastic taping is a non-pharmacological intervention used to improve ankle stability. This study aimed to investigate the immediate effects of elastic taping on ankle stability, center of pressure (COP) movement, and foot pressure distribution. Methods: A single-group pre-posttest design was employed, with 30 participants included in the study. Plantar pressure and COP parameters were measured before and after the application of elastic taping. Taping was administered in three distinct patterns to enhance ankle stability. Results: Immediate effects of elastic taping were evident in COP parameters. Following taping application, there was a significant decrease in COP total displacement, COP area, and COP velocity. However, no significant changes were observed in plantar pressure parameters. Conclusion: The application of elastic taping in this study demonstrated immediate effects on ankle stability and COP parameters, indicating its potential as a viable intervention for improving balance. Further research with larger sample sizes and long-term follow-up is needed to elucidate the sustained effects of elastic taping on ankle stability.

Changes in Plantar Pressure and Gait Characteristics in Adults with Asymptomatic Flexible Pes Planus by Different Taping (테이핑 방법에 따른 유연성 평발의 족저압 및 보행 특성 변화)

  • Kim, Jong-Soon
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.167-177
    • /
    • 2022
  • Purpose: Pes planus is a common foot deformity that involves the loss of the medial longitudinal arch. The medial longitudinal arch deformity is usually asymptomatic; however, it can lead to an increased risk of pain and injury. Low-Dye taping is designed to treat plantar heel pain and pes planus. However, low-Dye taping is relatively complex, and a considerable amount of time is required to apply the tape correctly. The purpose of this study was to compare the acute effect of two different types of taping (low-Dye taping and modified Mulligan taping) on arch reformation, plantar pressure, and gait characteristics in participants with asymptomatic flexible pes planus. Methods: Twenty subjects (9 males and 11 females; mean age = 21.95 years) with asymptomatic flexible pes planus voluntarily participated in this study. Arch reformation was evaluated using navicular height measurements. Changes in plantar pressure distribution were measured using BioRecue equipment. Gait parameters were measured using spatiotemporal data collected during consecutive gait cycles using a G-WALK device. One-way analysis of variance was used to compare the three different conditions (i.e., bare foot, low-Dye taping, and modified Mulligan taping) for each variable. Results: Navicular height was significantly increased in subjects who underwent the two types of taping compared to those who experienced the bare foot condition. The plantar pressure was significantly shifted to the posterolateral area after modified Mulligan taping compared with the bare foot condition. There were no significant differences in the gait parameters. Conclusion: The findings of this study indicate that modified Mulligan taping has a similar effect to low-Dye taping, and modified Mulligan taping is a simpler method than low-Dye taping.

Mechanical Analysis of golf driving stroke motion (골프드라이빙 스트로크시 역학적 분석)

  • Park, Kwang-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.205-219
    • /
    • 2002
  • This research seeks to identify the plantar pressure distribution graph and change in force in connection with effective golf drive strokes and thus to help ordinary golfers have appropriate understanding on the moving of the center of weight and learn desirable drive swing movements. To this end, we conducted surveys on five excellent golfers to analyze the plantar pressure applied when performing golf drive strokes, and suggested dynamic variables quantitatively. 1) Our research presents the desire movements as follows. For the time change in connection with the whole movement, as a golfer raises the club head horizontally low above ground from the address to the top swing, he makes a semicircle using the left elbow joint and shaft and slowly turns his body, thus lengthening the time. And, as the golfer twists the right waist from the middle swing to the impact with the head taking address movement, and does a quick movement, thus shortening the time. 2) For the change in pressure distribution by phase, to strike a strong shot with his weight imposed from the middle swing to the impact, a golfer uses centrifugal force, fixes his left foot, and makes impact. This showed greater pressure distribution on the left sole than on the right sole. 3) For the force distribution graph by phase, the force in the sole from the address to halfway swing movements is distributed to the left foot with 46% and to the right foot with 54%. And, with the starting of down swing, as the weight shifts to the left foot, the force is distributed to the left sole with 58%. Thus, during the impact and follow through movements, it is desirable for a golfer to allow his left foot to take the weight with the right foot balancing the body. 4) The maximum pressure distribution and average of the maximum force in connection with the whole movement changed as the left (foot) and right (foot) supported opposing force, and the maximum pressure distribution also showed much greater on the left sole.