• 제목/요약/키워드: Plantar Foot Pressure

검색결과 172건 처리시간 0.027초

내림 경사로의 기울기에 따른 족저압과 압력중심이동경로 분석 (Analysis of Plantar Foot Pressure and Pathway of COP Depending on Inclination of Descending Ramp)

  • 한진태;황보각
    • 한국콘텐츠학회논문지
    • /
    • 제10권8호
    • /
    • pp.257-265
    • /
    • 2010
  • 본 연구는 내림 경사로를 내려오는 동안 경사로의 기울기 변화가 보행 시 족저 영역별 최고 압력과 입각기 동안 압력중심이동경로를 분석하고자 실시하였다. 보행에 문제가 없는 열다섯 명의 건강한 젊은 성인이 이 연구에 참여하였으며 각각 평지, 내림경사 $5^{\circ}$, $10^{\circ}$, $15^{\circ}$의 경사로를 내려오는 동안 입각기 발의 족저 최고 족저압과 압력중심이동경로를 측정하였다. 측정장비는 Tekscan사의 Footmat system을 이용하였으며, 대상자의 발을 일곱 개의 영역(두 개의 발가락 영역, 세 개의 전족부 영역, 한 개의 중족부와 후족부영역)으로 나누어 자료를 수집하였다. 내림경사로의 기울기에 따른 최고 족저압의 차이를 알아보기 위해 반복측정분산분석을 이용하였고 압력중심이동경로는 육안적 관찰을 통해 알아보았다. 본 연구를 통해 내림경사로의 기울기가 커질수록 입각기 동안 최고 족저압은 엄지발가락영역에서 유의하게 증가하였고 세개의 전족부 영역에서는 유의하게 감소하였다. 그리고 압력중심이동경로는 내림경사로의 기울기가 커질수록 전족부에서 압력 중심이 내측으로 이동하였고 엄지발가락까지 길어지는 경향을 볼 수 있었다. 따라서 내림경사로의 기울기가 $-5^{\circ}$에서부터 일부 족저영역의 압력분포가 유의하게 달라지며 이는 내림경사로의 기울기가 발의 구조와 기능에 영향을 미친다는 것을 알 수 있었다.

엄지 발가락외반증환자의 발바닥 압력분포 특성 (Plantar Pressure Distribution Characteristics of Hallux Valgus)

  • 김영호;박시복;양길태;임송학;이강목;문무성
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권4호
    • /
    • pp.439-446
    • /
    • 1997
  • 증가하고 있는 주요 족부질환인 엄지발가락외반증의 특성을 이해하기 위하여 본 연구를 수행하였다.23명의 엄지발가락외반증 환자들에 관한 방사선학적 연구와 함께 자유보행시의 족저압력분포를 측정하였다. 또한 본 연구에서는 족저압력 분포를 상세히 분석하기 위한 해부학적으로 적절한 구역설정을 제시하였다. 족저압력분포를 측정한 결과, 엄지발가락외반증이 심한 환자일수록 중족골 부위의 압력, 접촉면 적과 시간, 충격량 등이 현저하게 증가함을 알 수 있었다. 엄지발가락외반증은 신발의 선정이 잘못됨에 의하는 경우가 적지 않았다. 족저압력집중은 족부질환에 있어서 매우 중요하므로, 신발의 설계에 있어서 적절한 족저압력분포를 고려하여야 한다.

  • PDF

등산화의 종류와 보행동작에 따른 지면반력 및 족저압력 분석 (Analyses of GRF & Insole Foot-Pressure Distribution: Gait Patterns and Types of Trekking Boots)

  • 박승범;이중숙
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.191-200
    • /
    • 2007
  • The purpose of this study was to analyze the foot-pressure distribution of trekking boots for assessing their functionality. Subjects participated in this study included 10 university male students who had no injury experience in lower limbs and a normal gait pattern. The size of all subjects was 270mm. Five models of trekking boots, most popular in Korea (A, B, C, D & E company), were selected for the test. Using the PEDAR-X system and PEDAR-X insoles, 5 different walking stages were analyzed for the foot-pressure distribution: (a) straight gait; (b) $45^{\circ}$ turn gait; (c) $25^{\circ}$ uphill gait; and (d) $25^{\circ}$ downhill gait. Results of the foot-pressure distribution and functionality on each stage were as follow; 1. Straight gait - In case of Max ground reaction force, mean plantar pressure and Max plantar pressure, there was not a distinct tendency; however, products manufactured by E and A company showed relatively lower pressure distribution. 2. $45^{\circ}$ turn gait - In Max ground reaction force, mean plantar pressure and Max plantar pressure, there wasn't a distinct tendency; however, products manufactured by E and A company showed relatively lower pressure distribution. Results also revealed that the products manufactured by E and A company were superior to those by other companies in terms of functionality. 3. $25^{\circ}$ uphill gait - In Max ground reaction force, mean plantar pressure and Max plantar pressure, there wasn't a distinct tendency; however, products manufactured by E and C company showed relatively lower pressure distribution. Results also revealed that the products manufactured by E and C company were superior to those by other companies in terms of functionality. 4. $25^{\circ}$ downhill gait - In Max ground reaction force, Mean plantar pressure and Max plantar pressure, there wasn't a distinct tendency; however, products manufactured by E company showed relatively lower pressure distribution. Results also revealed that the products manufactured by E company were superior to those by other companies in terms of functionality. Overall, five pairs of trekking shoes selected in this study showed the excellent performance in several conditions. The findings above may provide us with the important criteria for choosing trekking boots.

20대 여성의 신발종류에 따른 족저압 영역별 비교 연구 (A comparison study for mask plantar pressure measures to the difference of shoes in 20 female)

  • 김용재;지진구;김정태;홍준희;이중숙;이훈식;박승범
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

트레드밀보행 시 경사도에 따른 족저압과 발목관절의 관절가동범위의 변화 (The change of ankle of plantar pressure and range of motion joint according to treadmill gradients)

  • 김태호;김병곤
    • 대한정형도수물리치료학회지
    • /
    • 제14권1호
    • /
    • pp.39-47
    • /
    • 2008
  • Purpose : The purpose of this study was to investigate the change of the peak plantar pressure distribution under the foot areas and the range of motion (ROM) of ankle joint according to gradients in treadmill gait. Method : Thirty normal subjects (15 male and 15 female) walked on treadmill at three gradient conditions ($0^{\circ}$, $10^{\circ}$, and $15^{\circ}$) in normal speed. The ankle ROM was measured using the CMS70P that is three dimensional analyzer for excursion of ankle ROM, plantar flexion, and dorsi flexion. The peak plantar pressure distribution under the hallux, 1st metatarsal head (MTH) and heel was measured using the F -Scan system with an in-shoe sensor. Data was collected from 9 steps of left sife foot in at each gradient condition while all subjects walked. Result : As the treadmill gradient increased, the excursion of ankle joint was significantly increased (p<.05). Also, plantar flexion and dorsi flexion was significantly increased according to treadmill gradients (p<.05). The peak plantar pressure under the 1st MTH was significantly increased (p<.05) and the peak plantar pressure under the heel was significantly decreased (p<.05) as the treadmill gradient increased. No significant different in the peak plantar pressure under the hallux was observed. Conclusion : This study suggests that physical therapy for patients who have limited ankle ROM should be considered sufficient range of motion for functional ambulation. And individuals that have painful forefoot syndromes, including metatarsalgia, hallux valgus, and plantar ulceration should be careful in walking to uphill, as there is high plantar pressure under the forefoot.

  • PDF

Analysis of the Gait Characteristics and Usability after Wearable Exoskeleton Robot Gait Training in Incomplete Spinal Cord Injury Patients with Industrial Accidents: A Preliminary Study

  • Bae, Young-Hyeon;Kim, Sung-Shin;Lee, Anna;Fong, Shirley S.M.
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권2호
    • /
    • pp.235-244
    • /
    • 2022
  • Objective: The aim of this study was to investigate of the foot plantar pressure and usability after gait training using the ExoAtlet wearable exoskeleton robot in an incomplete spinal cord injury (SCI) patient. Design: A case study Methods: Six participants with an asymmetry in motor and sensory function completed the gait training using ExoAtlet wearable exoskeleton robot for 15 sessions, five per weeks, 3weeks. They were divided into two groups (low and high strength group) and group differences were evaluated about session at stating of gait, gait distance at final session and foot plantar pressures and useability after training. Results: Low strength group was faster than high strength group on adaptation of robot gait. And high strength group increased faster than low strength group on the gait distance during training. In standing and gait, weaker leg was higher than stronger leg on mean foot plantar pressure in low strength group. And stronger leg was higher than weaker leg on foot plantar pressure in high strength group. The length of the anterior-posterior trajectory of the center of pressure during gait was similar in low strength group, but different in high strength group. useability was positive about ExoAtlet wearable exoskeleton gait after training. Conclusions: ExoAtlet wearable exoskeleton robot gait training was positive about improving gait in all participants regardless of differences in severity of symptoms and gait abnormalities.

The Effect of Plantar Foot Pressure Negotitating Obstacles in the Elderly

  • Seo, Kyo-Chul;Kim, Hyeun-Ae;Kim, Hee-Tak;Kim, Sung-Gyung;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • 제23권6호
    • /
    • pp.15-22
    • /
    • 2011
  • Purpose: This research investigated falls due to obstacles that occur among elderly people by assessing changes in the values of plantar foot force, peak force, and plantar foot pressure in elderly subjects while they were stepping over obstacles of different heights. Methods: The subjects were 20 elderly people aged 70-80 years; Pressure was measured on flat ground(0 cm), and after installing obstacles of 8 cm and 12 cm using the F-scan system, which is a resistance-type pressure sensor. A one-way analysis of variance was performed to compare pressure on each part of the foot according to various heights after collecting data using the Tekscan program. The least significant difference test was used for the post-hoc analysis, A p-value <0.05 was considered significant. Results: The force value for the toe area (parts 1, and 2) and contact pressure increased significantly with the 12 cm obstacle (p<0.05). The peak force value and the peak contact pressure for part 1 increased significantly with the 12 cm obstacle (p<0.05). Conclusion: Larger changes appeared in the functions and structure of the foot while subjects walked over obstacles of different heights compared to flatland walking. This result suggests that people have safety strategies to prevent falls, and that there is a need for a more realistic approach through practice to overcome obstacles of various heights to prevent falls.

인체 족부 근골격계 상세 유한요소모델링을 통한 족저압 해석 (Pressure Analysis of the Plantar Musculoskeletal Fascia Using a Fine Finite-Element Model)

  • 전성모;김철
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1237-1242
    • /
    • 2011
  • 족저부의 압력 분포를 해석하기 위하여 인체에 근접한 족부 상세 해석용 모델을 개발하였다. 이 상세 해석용 모델은 족부의 단층촬영 영상(CT scan image)으로부터 밀도 차이에 따라서 골격부와 피부 및 피하조직을 각각 3D CAD 모델로 변환한 후에 결합하여 구성하였며, 근육과 뼈, 피부 모두를 반영한 3D 족부 유한요소해석 모델로 개발하였다. 개발된 3D 족부 유한요소모델에 대하여 NASTRAN의 접촉해석을 수행하여 족저압의 분포를 계산하였으며, 이러한 결과는 균일분포압력을 작용시키는 당뇨병 환자용 신발 설계의 기초 자료로 활용될 수 있다.

평지 보행 그리고 계단과 경사로 오르기 동안 압력중심 이동경로 및 족저압 비교 (Comparison of Plantar Foot Pressure and Shift of COP among Level walking, Stairs and Slope Climbing)

  • 한진태;김경;임승건
    • 한국운동역학회지
    • /
    • 제18권4호
    • /
    • pp.59-65
    • /
    • 2008
  • 본 연구는 일상생활에서 흔히 접하게 되는 시설물 중 낙상의 위험이 큰 계단과 경사로 오르기 동안 젊은 성인과 노인들의 압력중심이동 경로와 족저압 변화에 대해 알아보았다. 측정도구는 MatScan system(Tekscan, USA)을 사용하였다. 보행 조건(평지 보행, 계단 오르기, 경사로 오르기)에 따른 족저 영역별 족저압의 차이를 알아보기 위해 일원배치분산분석(One-way ANOVA)을 사용하였다. 압력중심 이동경로는 젊은 성인의 경우 평지 보행과 비교해 계단 오르기에서 조금 짧아졌으며 전족부에서는 외전하는 경향이 나타났다. 경사로 오르기에서는 대체적으로 내전되는 경향이 나타났고 특히 입각기 말기에 엄지발가락으로 압력중심이 이동하였다. 노인의 경우 평지 보행과 비교해 계단 오르기에서 압력중심 이동 경로가 짧아졌으며 앞뒤로 이동이 많았으며 전족부에서는 외전되었다. 경사로 오르기에서는 압력중심이 좌우로 이동하는 경향이 나타났다. 족저 영역별 최고 족저압은 젊은 성인의 경우 평지보행과 비교해 경사로 오르기 에서 2-3번째 중족골두 영역과 후족부 영역의 최고 족저압이 유의하게 감소하였다. 노인의 경우 첫 번째 중족골두 영역은 계단 오르기에서 최고 족저압이 증가하고 경사로 오르기에서 최고 족저압이 감소하였고, 두 번째 중족관절 영역과 후족부 영역은 평지 보행과 비교해 경사로 오르기에서 최고 족저압이 감소하였다. 같은 기울기의 계단과 경사로 오르기 동안 최고 족저압은 대체적으로 경사로 오르기에서 변화가 크게 나타났다.

Biomechanical Effectiveness of the Low-Dye Taping on Peak Plantar Pressure During Treadmill Walking Exercise in Subjects With Flexible Flatfoot

  • Lim, One-Bin;Kim, Jeong-Ah;Kwon, Oh-Yun;Yi, Chung-Hwi
    • 한국전문물리치료학회지
    • /
    • 제22권2호
    • /
    • pp.41-51
    • /
    • 2015
  • The purposes of this study were 1) to determine the effects of low-dye taping on peak plantar pressure following treadmill walking exercise, 2) to determine whether the biomechanical effectiveness of low-dye taping in peak plantar pressure was still maintained following removal of the tape during treadmill walking, and 3) to determine the trend towards a medial-to-lateral shift in peak plantar pressure in the midfoot region before and after application of low-dye taping. Twenty subjects with flexible flatfoot were recruited using a navicular drop test. The peak plantar pressure data were recorded during five treadmill walking sessions: (1) un-taped, (2) baseline-taped, (3) after a 10-minute treadmill walking exercise, (4) after a 20-minute treadmill walking exercise, and (5) after removal of the taping. The foot was divided into six parts during the data analysis. One-way repeated measures analysis of variance was performed to investigate peak plantar pressure variations in the six foot parts in the five sessions. This study resulted in significantly increased medial forefoot peak plantar pressure compared to the un-taped condition (p=.017, post 10-minute treadmill walking exercise) and (p=.021, post 20-minute treadmill walking exercise). The peak plantar pressure in the lateral forefoot showed that there was a significant decrease after sessions of baseline-taped (p=.006) and 10-minute of treadmill walking exercise (p=.46) compared to the un-taped condition. The tape removal values were similar to the un-taped values in the five sessions. Thus, the findings of the current study may be helpful when researchers and clinicians estimate single taping effects or consider how frequently taping should be replaced for therapeutic purposes. Further studies are required to investigate the evidence in support of biomechanical effectiveness of low-dye taping in the midfoot region.