• Title/Summary/Keyword: Plant temperature

Search Result 4,485, Processing Time 0.036 seconds

High Temperature Stress of Summer Chinese Cabbage in Alpine Region (고랭지 여름배추의 고온장해 원인 해석)

  • Hwang, Seon-Woong;Lee, Ju-Young;Hong, Sung-Chang;Park, Yang-Ho;Yun, Seung-Gil;Park, Moon-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.417-422
    • /
    • 2003
  • The objective of this study was to assess the regime of heat shock protein and leaf temperature caused by high temperature stress in chinese cabbage grown in alpine region. In monsoon period, high temperature and heavy rain have caused a stress condition for the cultured higher plants. Chinese cabbages were grown in different altitude, i.e. 600 m and 1,100 m. It was demonstrated that heat shock protein (Hsp 90) in alpine chinese cabbage leaf was actively expressed by high temperature and surplus nitrogen application. As a results of thermo-graphically observed leaf temperatures, chinese cabbage grown in high altitude region were ranged from 20.5 to $24.3^{\circ}C$ while in low altitude from 24.0 to $31.5^{\circ}C$. Furthermore, analysis of assimilated nutrients indicated that total nitrogen content was higher in plant grown under high temperature than under low temperature.

A Study on the Degradation Evaluation of X20CrMoV12.1 Steel (X20CrMoV12.1강의 열화평가에 관한 연구)

  • Lee, S.H.;Kim, T.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Power plant boiler is one of the most important utilities providing steam to turbine in thermal power plant. It is composed of thousands of boiler tubes for high efficient heat transfer. Boiler tube material is used in such high temperature and pressure as $540^{\circ}C$, $170kg/mm^2$. The boiler tube material is needed to resist corrosion damage, creep damage and fatigue damage. 2.25%Cr-1Mo steel is used for conventional boiler tubes. In these days steam temperature and pressure of the power plant became higher for high plant efficiency. So, the material property of boiler tube must be upgraded to meet the plant property. Several boiler tube material was developed to meet such condition. X20CrMoV12.1 steel is also developed in early 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensitic structure, which is difficult to evaluate the material degradation. Boiler tube material at severe condition was tested to evaluate long term and short term degradation and creep. Through long term and high temperature degradation test, lath structure was decreased and recrystallization has been proceeded by sub-crystal. And in this research the effect of temperature and stress on boiler tube characteristic,for example, deformation by creep was changed rapidly at relatively high temperature and stress because creep was affected easily by temperature and stress.

Selection of Number of Fans in an Air-Cooled Condenser of a 150 MW Thermal Power Plant according to Ambient Air Temperature (대기온도 변화에 따른 150 MW 화력발전소용 공랭식 복수기 송풍기수 선정)

  • Hwang, Yong-Hoon;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Lee, Jae-Heon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.10 no.4
    • /
    • pp.24-28
    • /
    • 2014
  • During this study, number of fan by ambient air temperature that condenser pressure satisfies steam turbine exhaust pressure condition with intervals of $3^{\circ}C$ within the 150 MW thermal power plant site temperature range of $-17.1^{\circ}C$ to $36.7^{\circ}C$ was reviewed. An air cooled condenser changes its operating pressure influenced by cooling air circulation amount by atmospheric temperature and number of fan. For stable power plant operation, these were confirmed to maximize a quantity of air-cooled condenser fans at above or equal from design ambient temperature and to reduce an amount of circulating air to an air cooled condenser by depending on a quantity of fan considering exhaust pressure operation condition of a steam turbine at below design ambient temperature.

  • PDF

The Characteristics of the winter season window and indoor temperature due to the indoor plant (동계 이중외피와 내부식재에 의한 실내 온도 특성에 관한 연구)

  • Yun, Young-Il;Cho, Ju-Young
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Purpose: This study desires to investigate an effect of indoor temperature, humidity, and illuminance targeting a planting system of double-skin facade and cavity space adjacent to the outside within a certain period of winter. Through this, the study suggests a basic material about an energy conservation effect of double window system using planting to reduce heating load of a building in winter, so desires to contribute to indoor thermal comfort effect and illuminance correction study of double window and indoor plant. Method: Considering effects such as day and night climatic elements and air conditions in winter, illuminance measurement was conducted through a double-skin facade of space, a subject of the measurement, on the basis of practical residence time of a resident, and this study analyzed characteristics of indoor illuminance about this. The study measured and compared a change of insolation, dry-bulb temperature, and relative humidity at each indoor-outdoor measuring point, so measured and compared characteristics of an indoor temperature effect by elements of double-skin facade and indoor plant. Result: Through this study, the researcher could determine that indoor plant within double window in winter not only blocks solar radiation but also photosynthesizes, so is somewhat disadvantageous to winter thermal comfort reducing heating load. In addition, solar radiation going through interior plays a role to bring down somewhat high humidity to about 50% of reasonable humidity, so plays a direct role of maintenance of comfortable indoor space. Although there are effects such as blocking of solar radiation and temperature reduction, this has a positive influence on humidity control and proper illuminance distribution. The researcher could determine that illuminance, temperature, and humidity by solar radiation penetration for the whole measuring time play a role to supplement indoor environment mutually.

Studies on Some Weather Factors in Chon-nam District on Plant Growth and Yield Components of Naked Barley (전남지역의 기상요인이 과맥의 생육 및 수량구성 요소에 미치는 영향)

  • Don-Kil Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.19
    • /
    • pp.100-131
    • /
    • 1975
  • To obtain basic information on the improvement of naked barley production. and to clarify the relation-ships between yield or yield components and some meteorogical factors for yield prediction were the objectives of this study. The basic data used in this study were obtained from the experiments carried out for 16 years from 1958 to 1974 at the Chon-nam Provincial Office of Rural development. The simple correlation coefficients and multiple regression coefficients among the yield or yield components and meteorogical factors were calculated for the study. Days to emergence ranged from 8 to 26 days were reduced under conditions of mean minimum air temperature were high. The early emergence contributed to increasing plant height and number of tillers as well as to earlier maximum tillering and heading date. The plant height before wintering showed positive correlations with the hours of sunshine. On the other hand, plant height measured on march 1st and March 20th showed positive correlation with the amount of precipitation and negative correlation with the hours of sunshine during the wintering or regrowth stage. Kernel weights were affected by the hours of sunshine and rainfall after heading, and kernel weights were less variable when the hours of sunshine were relatively long and rainfalls in May were around 80 to 10mm. It seemed that grain yields were mostly affected by the climatic condition in March. showing the negative correlation between yield and mean air temperature, minimum air temperature during the period. In the other hand, the yield was shown to have positive correlation with hours of sunshine. Some yield prediction equations were obtained from the data of mean air temperature, mean minimum temperature and accumulated air temperature in March. Yield prediction was also possible by using multiple regression equations, which were derived from yield data and the number of spikes and plant height as observed at May 20th.

  • PDF

Bolting Response of Various Lettuce Cultivars Affected by Seed Treatments (종자처리에 의한 상추 품종간 추대반응 차이)

  • Hwang, Hyeon-Jeong;Lee, Jung-Myung;An, Jong-Moon;Kim, Se-Young;Choi, Geun-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.325-331
    • /
    • 2007
  • A series of experiments were performed to evaluate effects of lettuce seed treatment with low temperature and dry heat treatment (DHT) on bolting response in the case of spring cultivation. During spring production in greenhouse, bolting response of the plants produced from the treated seeds was faster in the order of low temperature treatment, control and DHT. Plant height was increased 5-10 cm higher by low temperature treatment, but plant growth of some cultivars was inhibited by DHT. Difference on lettuce plant growth between low temperature treatment and DHT was gradually diminished with the lapse of time after transplanting. Fresh weight of plant was not significantly different among all treatments. 'Red Gyeolku' showed very early bolting response and plant height was significantly promoted by low temperature treatment. However, 'Cheongchima' showed low bolting percentage after various seed treatments, so it is considered late-bolting cultivar.

The Germination Characteristics of Seed by Storage and Germination Temperature in Astragalus membranaceus (저장 및 발아 온도조건에 따른 황기 종자의 발아 특성)

  • Choi, Jae Hoo;Lee, Jae Geun;Seong, Eun Soo;Yoo, Ji Hye;Kim, Chul Joong;Lee, Gi Hye;Ahn, Young Sup;Park, Chung Berm;Lim, Jung Dae;Yu, Chang Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.6
    • /
    • pp.461-465
    • /
    • 2013
  • This study was investigated to evaluate germination rate of Astragalus membranaceus B. in Korea as affected by storage temperature, germination temperature and storage period of seed. The highest germination rate was obtained from condition of $25^{\circ}C$ in germination temperature. Seeds were stored at $-20^{\circ}C$ and $5^{\circ}C$ for 8 weeks has showed higher germination rate than one at room temperatures. The germination rates showed significantly difference by harvested year of 2010, 2011 and 2012. The seed of A. membranaceus in harvested year of 2011 and 2012 had germinated well. On the other hand, seeds in harvested year of 2010 were not nearly germinated. Consequently, the longer storage period after seed harvest lower germination rate and seed vigor as well.

Comparison of the phenological characteristics of woody species in 2007 and 2018 at Daegu University Forest

  • Lee, Su-Ho;Park, Yeong Dae
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.529-538
    • /
    • 2019
  • This study examined the changes in plant phenology of 12 woody species in Daegu University Forest, Gyeongsan-si, Gyeongsanbuk-do in 2007 and 2018. The Hobo was installed at a height of 1.2 meters to measure the microclimate such as air temperature and relative humidity to identify its effects on the changes in plant phenology. The number of trees surveyed were 42 individuals that included 12 species in 9 families, all of which are deciduous broad-leaved trees. The trends in temperature change in 2018 were similar to that in 2007, except for the temperatures in the warmest and coldest month. Compared to 2007, the average temperature of the warmest month in 2018 was $2.5^{\circ}C$ higher, and the coldest month was $3.3^{\circ}C$ lower. The lowest temperature from February to April in 2018 had the highest correlation with the blooming dates of the trees (r = 0.692) in 2018, and the highest temperature showed the lowest correlation (r = 0.392). The blooming date by species was significantly different (p < 0.05). The blooming date of 8 species (75%), including Prunus padus, was earlier by 1 to 16 days, while 4 species, such as Prunus armeniaca var. ansu, was later by 1 to 7 days in 2018 than that in 2007. However, the flowering duration did not have a significant effect on the plant phenology. The results can be used as basic data for long-term monitoring of plant phenology in the future, and follow-up studies on other environmental factors and physiological factors are needed.

Rock-Surface Temperatures of the Summit Area of Mt. Halla as a Habitat for an Arctic-alpine Plant Diapensia lapponica var. obovata (돌매화나무 서식지로서 한라산 정상 암벽 표면의 온도특성)

  • Kim, Taeho;Lee, Seung-Wook
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.4
    • /
    • pp.89-101
    • /
    • 2018
  • In Mt. Halla, an arctic-alpine plant Diapensia lapponica var. obovata largely clings to rock surfaces. We observed the rock-surface temperatures of a rocky ridge on the summit area of the mountain from late April 2009 to early May 2010 in order to examine the diurnal and annual temperature variations and the thermal amplitude. We also investigated temperature regimes such as the frequency of freeze-thaw cycles and the temperature change, which might endanger the habitat through frost weathering. For comparison of slope aspects, temperature monitoring was carried out on the north and south faces of the same rocky ridge. The south face experiences the high daily maximum rock-surface temperatures and the high thermal amplitudes during the unfreezing season of May to November 2009. The temperature regimes are considered to exert physiological stress to the arctic-alpine plant. In addition, the south face shows the high frequency of freeze-thaw cycles during the seasonal freezing period of December 2009 to April 2010. This indicates that the south face is susceptible the exfoliation and granular disintegration of rock surfaces, which results in habitat destruction. As a consequence, the south face is believed to be less favorable for the establishment and growth of the arctic-alpine plant than the north face on the summit area of Mt. Halla.

A Development of the Performance Analysis Program Package of the Automatic Temperature Control System for Heating (난방용 자동온도조절기 성능분석용 프로그램 및 패키지 개발)

  • Kim, Yong-Ki;Woo, Nam-Sub;Lee, Tae-Won;Ahn, Byung-Cheon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1209-1214
    • /
    • 2009
  • Various automatic temperature control systems have been used widely in Korea for the conservation of heating energy and the enhancement of thermal comfort in residential buildings. But the heating control performance for automatic temperature control systems extensively vary with the design and operational conditions of the heating system, the climate condition and others. It was introduced in this study a numerical calculation program package to analyze heating control characteristics of the automatic temperature control system. This package is able to analyze the room air temperature, return water temperature, supplied heating flux and flow rate, and so on. One the other hand, the simulation results were verified by comparing with the field test results.

  • PDF