• Title/Summary/Keyword: Plant residue

Search Result 280, Processing Time 0.025 seconds

Allelopathic Potential of Select Gymnospermous Trees

  • da Silva, Jaime A. Teixeira;Karimi, Javad;Mohsenzadeh, Sasan;Dobranszki, Judit
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.2
    • /
    • pp.109-118
    • /
    • 2015
  • Allelopathy is an ecological phenomenon that refers to the beneficial or harmful effects of one plant on another plant, both crop and weed species, by the release of organic chemicals (allelochemicals) from plant parts by leaching, root exudation, volatilization, residue decomposition in soil and other processes in both natural and agricultural systems. Allelopathy can affect many aspects of plant ecology including occurrence, growth, plant succession, the structure of plant communities, survival, dominance, diversity, and plant productivity. In this review, we describe the concept of allelopathy, some mechanisms of operation within plants and then focus on a select number of gymnospermous tree genera: Ephedra, Pinus, Taxus, Cedrus, Juniperus, Picea, Cunninghamia and Araucaria. Pinus, Taxus (yew) and Cedrus (cedar) trees have a strong negative allelopathic effect on the germination, growth, or development of other plant species in the forest community.

The Allelopathic Effect of Alfalfa residues on Crops and Weeds (잡초와 작물에 대한 알팔파 잔유물의 Allelopathy 효과)

  • Yu, C.Y.;Jeon, I.S.;Chung, I.M.;Hur, J.H.;Kim, E.H.
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.131-140
    • /
    • 1995
  • This experiment was conducted to test the effect on germination and seedling growth of major industrial crops and weed control potential using alfalfa plant. When dried alfalfa residues were mixed into vermiculite, germination, length of shoot and root of crops, such as Perilla frutescens, Sorghum nevosum, Platycodon grandiflorum and weeds, Digitaria saguinalis, Setaria viridis, Siegesbechia pubescens, Ammaranthus lividus, and Solanum nigrum, were significantly inhibited as the dried residue concentration increased. More than 10% concentration of the dired residue caused 80% germination and growth inhibition. The fresh alfalfa exudation also inhibited the germination and seedling growth of crop, barley, rye, alfalfa, and sesame, and weeds, Echinochloa crus-galli, Siegesbechia viridis, and Portulaca oleracea. The degree of inhibition showed the different response according to the fresh exudation concentration, types of crops and weeds. Generally, as the exudation concentration increased, the germination and seedling growth of crops and weeds inhibited. The exudation of dried residue also exhibited the strong inhibition effect on germination and seedling growth of crops, alfalfa, Platycodon grandiflorum, barley, sesame, rye and weeds, D. sanguinalis, S. pubescens, S. viridis, P. oleracea, E. crus-galli, At the 10% concentrations, S. pubescens, and P. oleracea were not germinated and showed only 15% germination in the S. viridis. From this study, would conclude that alfalfa plant contained water soluble phytotoxic substances which were inhibitory to weeds and crops. This results suggest that alfalfa had some possibility to control some weed species using toxic compounds like natural herbicide.

  • PDF

Experimental study on the characteristics of Vacuum residue gasification in an entrained-flow gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.171-184
    • /
    • 2002
  • Approx. 200,000 bpd vacuum residue oil is produced from oil refineries in Korea. These are supplying to use asphalt, high sulfur fuel oil, and upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435-500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER(Korea Institute of Energy Research) are studing on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature : 1,100~1,25$0^{\circ}C$, reaction pressure : 1~6kg/$\textrm{cm}^2$G, oxygen/V.R ratio : 0.8~0.9 and steam/V.R ratio : 0.4-0.5. Experimental results show the syngas composition(CO+H$_2$) : 85~93%, syngas flow rate : 50~110Mm$^3$/hr, heating value : 2,300~3,000 ㎉/Nm$^3$, carbon conversion : 65~92, cold gas efficiency : 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

  • PDF

Experimental Study on the Characteristics of Vacuum Residue Gasification in an Entrained-flow Gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum Residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • Approx. 200.000 bpd vacuum residue oil is produced from oil refineries in Korea, and is supplied to use asphalt, high sulfur fuel oil and for upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however its high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435~500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER (Korea Institute of Energy Research) are studying on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature: 1.100~l,25$0^{\circ}C$, reaction pressure: 1~6 kg/$\textrm{cm}^2$G, oxygen/V.R ratio: 0.8~0.9 and steam/V.R ratio: 0.4~0.5. Experimental results show the syngas composition (CO+H$_2$): 85~93%, syngas flow rate: 50~l10 Nm$^3$/hr, heating value: 2,300~3,000 k㎈/Nm$^3$, carbon conversion: 65~92, cold gas efficiency: 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

Functional analysis of the rice BRI1 receptor kinase (벼 Brassinosteroid Insensitive 1 Receptor Kinase의 기능에 관한 연구)

  • Yeon, Jinouk;Kim, Hoy-Taek;Nou, Ill-Sup;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.30-36
    • /
    • 2016
  • Brassinosteroids (BRs) are essential plant steroid hormones required for cell elongation, plant growth, development and abiotic and biotic stress tolerance. BRs are recognized by BRI1 receptor kinase that is localized in the plasma membrane, and the BRI1 protein will eventually autophosphorylate in the intracellular domain and transphosphorylate BAK1, which is a co-receptor in Arabidopsis thaliana. However, little is known of the role OsBRI1 receptor kinase plays in Oryza sativa, monocotyledonous plants, compared to that in Arabidopsis thaliana, dicotyledonous plants. As such, we have studied OsBRI1 receptor kinase in vitro and in vivo with recombinant protein and transgenic plants, whose phenotypes were also investigated. A OsBRI1 cytoplasmic domain (CD) recombinant protein was induced in BL21 (DE3) E.coli cells with IPTG, and purified to obtain OsBRI1 recombinant protein. Based on Western blot analysis with phospho-specific pTyr and pThr antibodies, OsBRI1 recombinant protein and OsBRI1-Flag protein were phosphorylated on Threonine residue(s), however, not on Tyrosine residue(s), both in vitro and in vivo. This is particularly intriguing as AtBRI1 protein was phosphorylated on both Ser/Thr and Tyr residues. Also, the OsBRI1 full-length gene was expressed in, and rescued, bri1-5 mutants, such as is seen in normal wild-type plants where AtBRI1-Flag rescues bri1-5 mutant plants. Root growth in seedlings decreased in Ws2, AtBRI1, and 3 independent OsBRI1 transgenic seedlings and had an almost complete lack of response to brassinolide in the bri1-5 mutant. In conclusion, OsBRI1, an orthologous gene of AtBRI1, can mediate normal BR signaling for plant growth and development in Arabidopsis thaliana.

Residue Monitoring and Dietary Risk Evaluation of Fungicide Propiconazole in Leafy Vegetables under Greenhouse Conditions

  • Lawal Abdulkareem;Ji-Eun Oh;Se-Yeon Kwak;Sang-Hyeob Lee;Jae-Won Choi;Aniruddha Sarker;Kee Sung Kyung;Tae Hwa Kim;Jang-Eok Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.193-202
    • /
    • 2023
  • Residue monitoring of propiconazole (PCZ) in cabbage, shallot, and spinach was conducted under multi-trial greenhouse conditions. This study aimed to understand the fate of the applied fungicide in these vegetables. Furthermore, the associated health risk of PCZ in leafy vegetables was assessed through dietary risk assessment. Commercially available PCZ (22% suspension concentrate) was administered thrice according to the OECD fungicide application interval guideline. The plant samples were extracted using a slightly modified QuEChERS technique and analyzed using gas chromatography-tandem mass spectrometry. The average PCZ recovery was between 84.5% and 117.6%, with a <5% coefficient of variance. The dissipation of PCZ residue in cabbage, shallot, and spinach after 14 days was 96%, 90%, and 99%, respectively, with half-lives of <5 days. Meanwhile, dietary risk assessments of PCZ residues in the studied vegetables using the risk quotient (RQ) were significant < 100 (RQ < 100). Thus, the population groups considered in this study were not at substantial risk from consuming leafy vegetables sprayed with PCZ following critical, good agricultural practices.

Dissipation Pattern of Amisulbrom in Cucumber under Greenhouse Condition for Establishing Pre-harvest Residue Limit (생산단계 잔류허용 기준 설정을 위한 시설 재배 오이 중 살균제 Amisulbrom의 잔류특성 연구)

  • Hwang, Kyu-Won;Kim, Tae Wan;Yoo, Jae-Hong;Park, Byeoung-Soo;Moon, Joon-Kwan
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.288-293
    • /
    • 2012
  • The dissipation patterns of amisulbrom in cucumber under a greenhouse condition was investigated to establish biological half-life and pre-harvest residue limit (PHRL). Amisulbrom residue in/on cucumber on the day of application under standard application condition was $0.15mg\;kg^{-1}$ and decreased to $0.06mg\;kg^{-1}$ after 5 days after treatment, so that biological half-life calculated 3.6 day, while initial concentration of amisulbrom twice application 3 days interval under standard application condition was $0.35mg\;kg^{-1}$ and decreased to $0.09mg\;kg^{-1}$ after same period and the biological half-life calculated 2.4 day. PHRL was suggested by prediction curve calculated from the decay constant of amisulbrom at standard rate. For example, $1.83mg\;kg^{-1}$ at 5 days before harvest and $1.03mg\;kg^{-1}$ at 2 days before harvest were suggested.

Effect of Hairy Vetch Green Manure on Nitrogen Enrichment in Soil and Corn Plant (토양 및 옥수수의 질소 집적에 미치는 헤어리벳치 녹비시용 효과)

  • Seo, Jong-Ho;Lee, Ho-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.211-217
    • /
    • 2005
  • Fresh hairy vetch (HV) as a green manure equivalent to $240kg\;N\;ha^{-1}$ were incorporated into soil at corn planting in 1997 and 1998 to clarify the effects on changes of nitrogen (N) content in soil and corn plant. The influences of HV for the N of soil and plant were compared with those of ammonium nitrate (AN) in terms of mineralization and microbial biomass. During early decomposition of HV residue, the content of $NO_3-N$ in HV plot was as much as 60-70% of that in AN plot in surface soil of 0-15 cm depth. In addition, soil microbial biomass N (SMBN) by HV residue was increased up to $10-20mg\;kg^{-1}$ more than that by AN. Some mineral N from HV seemed to be released slowly until late corn growth stage judging from high content of $NO_3-N$ in both corn stem at silking stage and soil at harvest. There were no difference of N accumulations in corn plant at silking stage between HV and AN plots in both 1997 and 1998. At harvesting stage, a total of plant N accumulation in HV plot in 1997 was 8% less than that in AN plot while in 1998 it was 19% more. It was concluded that fresh HV green manure equivalent to $240kg\;N\;ha^{-1}$ was good enough to substitute the same amount with chemical N fertilizer by slow releasing of mineral N from HV residue in soil.