• Title/Summary/Keyword: Plant growth promoting rhizobacteria

Search Result 170, Processing Time 0.034 seconds

Effects of Plant Growth Promoting Rhizobacteria on the Growth of Hydroponicelly Grown Tomato Plants, Lycopersicon esculentum Mill. cv. 'Seokwang' (植物生長促進 根圈細菌이 養液栽培 토마토의 生長에 미치는 影響)

  • Cho, Ja-Yong;Chang, Young-Sik;Chung, Soon-Ju
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 1998
  • This study was conducted to clarify the plant growth promoting effects of the various rhizobacteria on the growth of hydroponically grown tomatoes in rockwool, perlite and cocopeat cultures. Strains in terms of $Azospirilham\;sp.(4.5{\times}10^7cells/g),\;Rhodopseudomonas\;sp.(5.8{\times}10^5cells/g),\;Pseudomonas\;sp.(6.1{\times}10^6cells/g$), fusant of $Bacillus\;sp.\;and\;Corynebacterium\;glutamicum(9.1{\times}10^5cells/g$) was bacterialized into the root zone of tomatoes before sowing. Overall growth of tomato plants was promoted by bacterialization of the various rhizobacteria. Strains which showed the highest plan growth promoting effects of hydroponically grown tomatoes was Azospirillum sp., and optimum cultural substrates for the plant growth promotion by rhizobactera were in the order of cocopeat > perlite = rockwool cultures.

  • PDF

Current Perspectives on the Effects of Plant Growth-promoting Rhizobacteria (식물생장촉진 근권미생물의 영향에 대한 연구 현황 및 전망)

  • Le, Thien Tu Huynh;Jun, Sang Eun;Kim, Gyung-Tae
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1281-1293
    • /
    • 2019
  • The rhizosphere is the active zone where plant roots communicate with the soil microbiome, each responding to the other's signals. The soil microbiome within the rhizosphere that is beneficial to plant growth and productivity is known as plant growth-promoting rhizobacteria (PGPR). PGPR take part in many pivotal plant processes, including plant growth, development, immunity, and productivity, by influencing acquisition and utilization of nutrient molecules, regulation of phytohormone biosynthesis, signaling, and response, and resistance to biotic- and abiotic-stresses. PGPR also produce secondary compounds and volatile organic compounds (VOCs) that elicit plant growth. Moreover, plant roots exude attractants that cause PGPR to aggregate in the rhizosphere zone for colonization, improving soil properties and protecting plants against pathogenic factors. The interactions between PGPR and plant roots in rhizosphere are essential and interdependent. Many studies have reported that PGPR function in multiple ways under the same or diverse conditions, directly and indirectly. This review focuses on the roles and strategies of PGPR in enhancing nutrient acquisition by nutrient fixation/solubilization/mineralization, inducing plant growth regulators/phytohormones, and promoting growth and development of root and shoot by affecting cell division, elongation, and differentiation. We also summarize the current knowledge of the effects of PGPR and the soil microbiota on plants.

Heavy Metals Immobilization in Soil with Plant-growth-promoting Rhizobacteria and Microbial Carbonate Precipitation in Support of Radish Growth

  • He, Jing;Zhang, Qiuzhuo;Achal, Varenyam
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.223-229
    • /
    • 2020
  • The application of plant-growth-promoting rhizobacteria (PGPR) supports the growth of plants in contaminated soil while ureolytic bacteria can immobilise heavy metals by carbonate precipitation. Thus, dual treatment with such bacteria may be beneficial for plant growth and bioremediation in contaminated soil. This study aimed to determine whether the PGPR Pseudomonas fluorescens could work in synergy with ureolytic bacteria to assist with the remediation of cadmium (Cd)- and lead (Pb)-contaminated soils. Pot experiments were conducted to grow radish plants in Cd- and Pb-contaminated soils treated with PGPR P. fluorescens and the results were compared with dual inoculation of P. fluorescens combined with ureolytic Staphylococcus epidermidis HJ2. The removal rate of the metals from the soil was more than 83% for Cd and Pb by the combined treatment compared to 17% by PGPR alone. Further, the dual treatment reduced the metal accumulation in the roots by more than 80%. The translocation factors for Cd and Pb in plant tissues in both treatments remained the same, suggesting that PGPR combined with the carbonate precipitation process does not hamper the transfer of essential metal ions into plant tissues from the soil.

Biocontrol of Fusarium Crown and Root Rot and Promotion of Growth of Tomato by Paenibacillus Strains Isolated from Soil

  • Xu, Sheng Jun;Kim, Byung Sup
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant.

Antagonistic Activity of Siderophore-Producing Bacteria from Black Rice Rhizosphere against Rice Blast Fungus Pyricularia oryzae

  • Nabila, Nabila;Kasiamdari, Rina Sri
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.217-224
    • /
    • 2021
  • Rice blast caused by Pyricularia oryzae, which is a major threat to food security worldwide, markedly decreases the yield of rice. Some rhizobacteria called 'plant growth-promoting rhizobacteria' inhibit plant pathogens and improve plant growth by secreting iron-chelating siderophores. The decreased availability of iron adversely affects the survival of pathogens, especially fungal pathogens, in the rhizosphere. This study aimed to determine the morphological diversity of siderophore-producing bacteria, analyze the type of siderophores produced by the bacteria, and examine their growth-inhibitory activity against Pyricularia oryzae. The rhizobacteria were isolated from the rhizosphere of Sembada Hitam variety of black rice plants in Pakem, Sleman, Yogyakarta, Indonesia. In total, 12 distinct isolates were screened for the production of siderophores. It was found that 9 out of 12 bacteria produced siderophore and most of them were Gram positive bacteria. The best siderophore-producing isolates with different type of siderophore were used in further studies. The IS3 and IS14 isolates were found to be the best siderophore producer that produced hydroxamate and mixed type of hydroxamate-carboxylate type of siderophore, respectively. In the dual culture assay, IS14 showed a strong antagonistic effect against Pyricularia oryzae by the 81.17% inhibition.

Effects of Various Plant Growth Promoting Rhizobacteria on the Early Growth of Red Pepper Seedlings, Capsicum annuum L. cv. Nockkwang (數種의 植物生長促進 根圈細菌이 '녹광' 고추 幼苗의 初期生長에 미치는 影響)

  • Cho, Ja-Yong;Chung, Soon-Ju
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.1
    • /
    • pp.137-146
    • /
    • 1998
  • Various rhizobacteria was isolated, and was bacterialized into the substrates to clarify the plant growth promoting effects of rhizobacteria on the early growth of red peper seedlings. Total 125 bacterial isolates were primarily isolated and purified from the soils in greenhouse. And four strains were finally screened, based on the antifungal activities against Fusarium sp., Pythium sp. and Rhizoctonia sp. of red pepper plants. The strongest antifungal strain RB 109 has a antagonistic activity against Fusarium sp., Pythium sp. and Rhizoctonia sp. in terms of 66.0%, 65.0% and 66.1%. Early growth of red pepper seedlings was promoted, when cultured solution of rhizobacteria RB 109 was bacterialized into the substrates. Antifungal rhizobacteria RB 109 was identified as Pseudomonas sp. related strains, which has a similarity of 82% to the Pseudomonas sp.

  • PDF

Induction of Systemic Resistance in Watermelon to Gummy Stem Rot by Plant Growth-Promoting Rhizobacteria

  • Lee, Yong-Hoon;Lee, Wang-Hyu;Shim, Hyeong-Kwon;Lee, Du-Ku
    • The Plant Pathology Journal
    • /
    • v.16 no.6
    • /
    • pp.312-317
    • /
    • 2000
  • The selected five plant growth-promoting rhizobacteria (PGPR) strains, WR8-3 (Pseudomonas fluorescens), WR8-6 (P. putida), WR9-9 (P. fluorescens), WR9-11 (Pseudomonas sp.), and WR9-16 (P. putida) isolated in the rhizosphere of watermelon plants were tested on their growth promotion and control effect against gummy stem rot of watermelon. Strains, WR8-3 and WR9-16 significantly increased stem length of watermelon, and there was a little increase in leaf area, fresh weight and root length when strains, WR8-3, WR9-9 and WR9-16 were treated. Generally, seed treatment was better for plant growth promotion than the soil drench, but there was no significant difference. Seed treatment and soil drench of each bacterial strain also significantly reduced the mean lesion area (MLA) by gummy stem rot, but there was no significant difference between the two treatments. At initial inoculum densities of each strain ranging from 10$^6\;to\;10^{15}$ cfu/g seed, approximately the same level of disease resistance was induced. But resistance induction was not induced at the initial inoculum density of 10$^3$ cfu/g seed. Resistance was induced by treating the strains, WR9-9, WR9-11 and WR9-16, on all of four watermelon varieties tested, and there was no significant difference in the decrease of gummy stem rot among varieties. Populations of the strains treated initially at log 9-10 cfu/g seed, followed with a rapid decrease from planting day to 1 week after planting, but the population density was maintained above log 5.0 cfu/g soil until 4 weeks after planting. Generally no or very weak in vitro antagonism was observed at the strains treated excepting WR9-11. Rifampicin-resistant bacteria which had been inoculated were not detected in the stems or leaves, which suggesting that the bacterium and the pathogens remained spatially separated during the experiment. This is the first report of rsistance induction in watermelon to gummy stem rot by PGPR strains.

  • PDF

Influence of the plant growth promoting Rhizobium panacihumi on aluminum resistance in Panax ginseng

  • Kang, Jong-Pyo;Huo, Yue;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.442-449
    • /
    • 2021
  • Background: Panax ginseng is an important crop in Asian countries given its pharmaceutical uses. It is usually harvested after 4-6 years of cultivation. However, various abiotic stresses have led to its quality reduction. One of the stress causes is high content of heavy metal in ginseng cultivation area. Plant growth-promoting rhizobacteria (PGPR) can play a role in healthy growth of plants. It has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas, such as Aluminum (Al). Methods: In vitro screening of the plant growth promoting activities of five tested strains were detected. Surface-disinfected 2-year-old ginseng seedlings were dipping in Rhizobium panacihumi DCY116T suspensions for 15 min and cultured in pots for investigating Al resistance of P. ginseng. The harvesting was carried out 10 days after Al treatment. We then examined H2O2, proline, total soluble sugar, and total phenolic contents. We also checked the expressions of related genes (PgCAT, PgAPX, and PgP5CS) of reactive oxygen species scavenging response and pyrroline-5-carboxylate synthetase by reverse transcription polymerase chain reaction (RT-PCR) method. Results: Among five tested strains isolated from ginseng-cultivated soil, R. panacihumi DCY116T was chosen as the potential PGPR candidate for further study. Ginseng seedlings treated with R. panacihumi DCY116T produced higher biomass, proline, total phenolic, total soluble sugar contents, and related gene expressions but decreased H2O2 level than nonbacterized Al-stressed seedlings. Conclusion: R. panacihumi DCY116T can be used as potential PGPR and "plant strengthener" for future cultivation of ginseng or other crops/plants that are grown in regions with heavy metal exposure.