• Title/Summary/Keyword: Plant growth hormone

Search Result 154, Processing Time 0.026 seconds

PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis

  • Choi, Hyunmo;Oh, Eunkyoo
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.587-593
    • /
    • 2016
  • As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth.

Plant Growth and Differentiation - Concerto for Hormones, Environment and Genes - (식물의 생장과 분화 - 유전자. 홀몬. 환경의 조화 -)

  • 맹주선
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.117-132
    • /
    • 1987
  • Plants are inherited spatial and temporal coordination systems in their growth and differentiation processes which are precisely governed by the two interlocked control systems; autogenous and environmental. Looking into the overall course of plant development from molecular to organismal level, it can be comparable to a concerto for plant hormones, environmental stimuli and plant genomic orchestra conducted by an unidentified virtuoso. Some of the recent significant attempts to puzzle out the mystery of the life processes of plant development are briefly reviewed. The revolutionary advances in understanding the mystic processes are contemporarily achieved by the application of various molecular techniques. The characterization of plant genomes is now attained through recombinant DNA approaches, and the sensitive detection of specific gene products during the plant development is perimitted by the immunochemical procedures. However, along with the recognition of underlying molecular events such as developmental changes in gene expression and hormone-receptor interrelation associated with tissue sensitivity to hormones, more emphasis should be placed upon the physiological approaches of organismal level for the understanding the correlative systems of the developmental processes of plants as intact eukaryotic organisms.

  • PDF

Induction and Culture of High Polyacetylene-Yielding Hairy Roots in Ballon Flower (Pathycodon grandiflorum) (도라지(Platycodon grandirorum) 뿌리조직에서 고농도 함유 모상근의 유도 및 배양)

  • Hwang, Baik
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.337-341
    • /
    • 1995
  • Hairy roots of Korean ballon flower (Platycodon grandiflorum A. DC) were induced from the root tissues infected with Agrobacterium rhizogenes ATCC 15834. Growth and polyacetylene [lobetyol (1), lobetyolin (2) and lobetyolinin (3)] production fo ten hairy root clones cultured in 1/4 Gamborg B5 (B5) liquid medium were determined. One selected hairy root clone (D6) grew well in hormone free-B5 liquid medium and showed maximum content of polyacetylenes at week 6 for 1 (0.375% dry wt) and at week 7 for 2 and 3 (3.030% and 0.206% dry wt, respectively) whose levels were much higher than those of the intact plant root (1:0.019%, 2:0.077% dry wt, 3 was not detected).

  • PDF

Effect of Plant Extract(YGF) on Inducing IGF-1 Secretion (식물추출물(YGF)의 lGF-1 분비촉진에 미치는 영향)

  • 최철석;김재수;이찬우;박점석;홍억기
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.203-206
    • /
    • 2002
  • The extracts of a lot of (different) plants were studied for inducing the secretion of growth hormone and IGF-1. In the cell test, it was found that the concentration of rat growth hormone was 88 - 99 ng/mL in a certain plant extract treatment group which was at least 6 times higher than the amount in control group. The concentration of IGF-1 in blood was 1,140ng/mL at 8 hours after the oral administration of YGF, which was remarkably much higher than that in control group. This meant that YGF maintained the level of IGF-1 secretion higher in the treated group. In addition, the increase of 6% in bone length was shown for the long-term oral administration of YGF. Thus, YGF seemed to affect significantly for inducing the secretion of IGF-1 which was essential for the physical growth and anti-aging.

Regulation of Plant Growth by Light-Growth Hormone Interactions

  • Park, Chung-Mo
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.94-97
    • /
    • 2002
  • Light is one of the most important environmental factors that influence plant growth and development. It does not function independently but exerts its role through coordinated interactions with intrinsic developmental programs, such as hormonal regulation. One typical example is hypocotyl growth in which light signals are modulated through growth hormones. However, the underlying molecular mechanisms are largely unknown. We demonstrated that brassinosteroids play an important role in the light signal transduction in etiolated hypocotyl growth. A light-responsive Ras-like G-protein, Pra2 from pea, physically and functionally interacts with a cytochrome P450 that specifically catalyzes C-2 hydroxylation in brassinosteroid biosynthesis. The cytochrome P450 expression, along with Pra2, is induced in the dark and predominantly localized in the rapidly elongating zone of etiolated pea epicotyls. Transgenic plants with a reduced level of Pra2 exhibit a dark-specific dwarfism, which is completely rescued by brassinosteroid application. On the contrary, overexpression of the cytochrome P450 results in enhanced hypocotyl growth even in the light, which phenocopies the etiolated hypocotyl growth. It is therefore envisioned that Pra2 is a molecular switch that mediates the crosstalk between light and brassinosteroids in the etiolation process.

  • PDF

Clonal Propagation in Commiphora Wightii (Arnott.) Bhandari

  • Mishra, Dhruv Kumar;Kumar, Devendra
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.218-225
    • /
    • 2014
  • Studies were carried out to standardize and develop a suitable macro-propagation technology for large scale production of superior clonal stock through stem cuttings in Commiphora wightii Arnott (Bhandari), a data deficient medicinal plant of arid region. For the purpose, three experiments were conducted. The first experiment was tried to elucidate the impact of various cutting diameters (0.50-0.75 cm, 0.75-1.00 cm, 1.00-1.50 cm, and >1.50 cm) in combination with varying growing conditions (sunlight, shade house and mist chamber) on shoot sprouting and rooting without using exogenous plant growth regulators. Cutting diameter (size 0.75-1.00 cm) in mist chamber has shown maximum sprouting (90.00%) and rooting (73.33%), primary root (6.67) and secondary root (16.67) followed by 1.00-1.51 cm in mist chamber. Minimum sprouting (40.00%), rooting (33.33%), number of shoot (1.33), primary root (1.00) and number of secondary root (1.00) was recorded in cutting diameter (size >1.50 cm) in sunlight. Second experiment was performed to find out optimum growth regulator concentration of rooting hormone (100, 200, 500 and 1000 ppm) of Indole-3-acetic acid (IAA) and Indole-3-butyric Acid (IBA) on adventitious root formation on cuttings diameter (size 0.25-0.50 cm) in comparison to control. Maximum rooting percentage (93.33%) was recorded in 200 ppm followed by 500 ppm (86.66%) of IBA as compared to control, which showed only 60 per cent sprouting. Third experiment was performed with newly formed juvenile micro-cuttings treated with varying concentrations of IAA and IBA. The juvenile cuttings (size 6-10 cm, basal dia <0.25 cm) were selected as micro-cuttings. The cuttings treated with IBA (500 ppm) showed 64.30% rooting as compared to other treatments. Results of above experiments indicate that cuttings (size 0.75-1.00 cm dia) may be developed in mist chamber for better performance. While using heavier cuttings, no growth promoting hormones is required however; growth regulator 200 ppm concentration of IBA rooting hormone was observed optimum for promoting macro-propagation in stem cuttings of lower diameter class (0.25-0.50 cm).

Hormonal Effect and Cytokinin Autonomy in callus Culture of Phaseolus vulgaris L. (식물 Hormone의 영향과 Cytokinin Autonomy)

  • 김상구
    • Journal of Plant Biology
    • /
    • v.25 no.4
    • /
    • pp.161-168
    • /
    • 1982
  • The activities of auxins and cytokinins have been examined in the growth of callus tissue derived from Phaseolus vulgaris L. cv. Damyang. The synthetic auxin, picloram was the most effective in promoting callus growth and the range of effective concentrations (0.1$\mu{M}$ to 32$\mu{M}$) was broad. 2, 4-D also enhanced callus growth at the optimal concentration of 3.2$\mu{M}$. NAA promoted callus growth at relatively higher concentrations than other auxins tested. IAA was less effective in supporting callus growth. Cytokinin bearing saturated side chain ($N^6$-isopentyladenine) was approximately 30 times more active than the corresponding unsaturated compound, $N^6$-($\D^2$-isopentenyl) adenine. The abilities of cytokinin-autonomous growth were also examined. Callus tissues previously grown on concentrations lower and/or higher than optimal concentrations of cytokinins were better habituated in the subsequent passage. It was suggested that the development of cytokinin autonomy may be related to dosage-concentrations of cytokinin in the previous passage.

  • PDF

The Development of Functional Food with Plant Extracts for Enhancing Growth Rate (생약추출물을 이용한 키 성장 기능성 식품 개발)

  • Ra, Jeong-Chan;Park, Hyeong-Geun;Choi, Mi-Kyung;Lee, Hang-Young;Kang, Kyung-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.3
    • /
    • pp.112-118
    • /
    • 2004
  • It has been reported that various kinds of chinese herbs have an activity of promote growth rate in both animals and human. To investigate the growth promoting effect of the selected plants, fish and pigs were used as experimental animals. In fish, Eleutherococcus senticosus extract and Artemisia capillasis extract were found to be most effective. And these plant extracts were given to pigs. The result showed that plant extracts-fed pigs were significantly increased their body weight gain at 7.06% of average daily gain, as compared to control. The verify this results, secreted growth hormone (GH)levels and insulin-like growth factor-1 (ICF-1) levels into blood were measured. This result indicated that GH and IGF-1 levels in the blood in plant extracts-fed pigs were higher that those of control. To confirm growth promotion effect on human, we manufactured the mixture of these plant extracts, and coated this mixture onto rice, named as $Kiwoomi^{TM}$. When we administered $Kiwoomi^{TM}$ to elementary students, it was found to be effective in growth promotion. This result showed that $Kiwoomi^{TM}$-treated elementary students significantly increased their growth rate (about 2.14 times), as compared to untreated children. Taken together, it is suggested that this functional rice ($Kiwoomi^{TM}$) might be helpful for growing children without any side effects.

In vitro plant regeneration from axillary buds of Hibiscus syriacus L.

  • Jeon, Seo-Bum;Kang, Seung-Won;Kim, Wan-Soon;Lee, Gung-Pyo;Kim, Sun-Hyung;Seo, Sang-Gyu
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.174-178
    • /
    • 2009
  • Presently, we report a simple, reproducible and high frequency plant regeneration in Hibiscus syriacus L. using axillary buds. H. syriacus was regenerated from axillary buds directly or through a callus phase. Regenerated shoots were directly induced from young and fresh axillary buds cultured on Murashige and Skoog medium (MS) supplemented with 0.01 mg/L of the growth regulator thidiazuron (TDZ) after 2 weeks of culture. Directly induced shoots were transferred to hormone-free MS medium and root development was observed after 6 weeks. On the other hand, old and stale axillary buds were regenerated to shoots via callus induction on MS medium containing 0.01–2 mg/L TDZ after 4 weeks. A TDZ concentration of 0.01 mg/L was most effective in callus formation. Green callus was transferred to MS medium containing 0.01 mg/L α-naphthalene acetic acid (NAA) and 0.5 mg/L benzylaminopurine (BA). After 4 weeks, callus had developed into multiple shoots. Plantlets were formed from 10 week cultures of single shoots on hormone-free MS medium. Regenerated plantlets were cultured on MS medium for one month and then transferred to pots containing garden soil. Potted plants were acclimatized for one month and grown to maturity under greenhouse conditions. The present study has shown that various concentrations of plant growth regulator can be effective for in vitro plant regeneration of H. syriacus. The direct and indirect regeneration protocol presented here will be useful for understanding the manipulation and propagation of H. syriacus.

Screening of Microorganisms Secreting Plant Growth Regulators (식물성장 조절물질을 분비하는 미생물의 탐색)

  • Cho, Bong-Heuy;Kim, Keun;Sung, Nack-Moon
    • The Korean Journal of Mycology
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 1993
  • Various microorganisms secreting plant growth regulators were screened from the 100 microbial isolates including bacteria, actinomycetes and fungi. The isolates showing distict influence on the plant growth were identified as Aspergillus niger. The germinations of Raphanus and Cucubis seeds were completely inhibited by the culture filtrates of A. niger KK, A. niger KKS and A. niger ATCC 9462. The culture filtrates of the three strains also inhibited the formation and development of roots and hypocotyls of Raphanus. The culture filtrates of A. niger ATCC 26550 induced the hypocotyl curvature of Raphanus like plant hormone-auxin and at the same time caused the necrosis of the whole leaves.

  • PDF