• Title/Summary/Keyword: Plant dry matter weight.

Search Result 325, Processing Time 0.027 seconds

Effect of Different Soil Water Potentials on Growth Properties of Northern-Highbush Blueberry (토양수분포텐셜이 북부형 하이부쉬 블루베리의 생육에 미치는 영향)

  • Kim, Hong-Lim;Kwack, Yong-Bum;Kim, Hyoung-Deug;Kim, Jin-Gook;Choi, Young-Hah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • The soil moisture has an important effect on growth and development of highbush blueberry (HB), mainly because the root system, devoid of root hairs, is superficial. Moreover, the texture and organic matter content of Korean soil is different from the main producing counties, such as USA and Canada. To facilitate the growth and development of HB and long-term maintenance of productivity, the research related to soil moisture condition in Korea should be the priority. This study was performed to investigate the growth properties of the HB in various soil moisture conditions in order to determine the irrigation trigger point and optimum soil water potential. The texture of soil used in this experiment was loam. For the experiments, the soil was mixed with peatmoss at a rates 30% (v/v). Irrigation was scheduled at -3, -4, -5, -8, -15 and -22 kPa soil water potential then investigated leaf macronutrient, bush growth, and fruit properties. The leaf K content of HB showed the same trend in the soil water potential, but Leaf P and Mg content was highest in -5 and -22 kPa, respectively. The productivity and growth amount of HB showed the peak at the range of -4~-8 kPa as normal distribution pattern, and greatly decreased at above -15 kPa. Total dry weight and Cane diameter were highest at -4 kPa, plant width, fruit weight and yield were highest at -5 kPa, and plant height, cane number and shoot tension were highest at -8 kPa. Soluble solids content showed same trend in the soil water potential, but titratable acidity, anthocyanins and total polyphenols were not significantly different. Therefore, the optimal soil water potential for the development and a maximum production of HB were a range of -4~-8 kPa, and the recommended ideal irrigation trigger point was within -15 kPa.

Sensitivity of rice Plant to Potassium Stress of Various Growth Stages -II Effect of potassium depression on grain yield and its relation to nutrient content (생육시기별수도(生育時期別水稻)의 가리부족(加里不足)에 대(對)한 감수성(感受性) -II 수량(收量)에 대(對)한 가리결제(加里缺除)의 영향(影響) 및 수량(收量)과 양분함량(養分含量)과의 관계(關係))

  • Park, Hoon;Mok, Sung Kyun;Kim, Sung Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.163-175
    • /
    • 1974
  • Effects on yields, yield components and nutrient content of potassium depression for two or three weeks at various growth stages were investigated in rice (var. Jinheung) under sand culture system.(K 40 ppm 1973) 1. Analysis of variance showed significant difference among treatments of both two-week (at p=0.01) and three-week depression (at p=0.05) in yield. 2. Most sensitive stage to potassium depression on yield appeared two weeks until heading (42% yield decrease) and sensitivity decreased the growth stage is apart from heading either before or after. During 30 days after transplanting two-week potassium depression increased yield, but three-week depression decreased yield. Until about 30 days after heading depression caused poor yield. 3. Root potassium involves in harvest index, filled grain ratio and grain weight with significant correlation and considerably in spikelet per panicle while potassium in leaf sheath+culm involves considerably in spikelet per panicle and panicle per hill. Relative total dry matter weight was significantly correlated with panicle per hill, spikelet per panicle and K or K/Ca+Mg only in leaf sheath+culm. The indications are that root potassium contributes for building sink and efficiency of structure while potassium in leaf sheat+culm primarily for building source, productive structure. 4. Relative yield was significantly correlated with potassium content in root and leaf sheath+culm and with K/Ca+Mg and its ratio before and after depression in root indicating that potassium depression occurs greatly in root and that K/Ca+Mg might have more important role than K content alone under depression. 5. Optimum level of $K_2O$ appears around 3% in leaf blade. 4% in leaf sheath+culm and 1% in root under the assumption that below these level the same content has the same role in relation to yield during growth. The K/Ca+Mg appeares to be 2.5 in root and should not decrease throughout the growth stages. 6. The increase of sodium content in plant by K depression was highest, especially in leaf sheath during the most insensitive period to K depression suggesting that insensitivity may be attributed to partial replacement of Na for K. Partial replacement seems very little in sensitive stage (later stage) and sensitive organ (root).

  • PDF

The Growth and Yield of Paddy Rice as Affected by Competitive Duration and Density of Flatsedge, Cyperus serotinus Rottb. (너도방동산이(Cyperus serotinus Rottb.)의 밀도(密度)와 경합기간(競合期間)이 수도(水稻)의 생육(生育)과 수량(收量)에 미치는 영향(影響))

  • Cho, Hyung-Yul;Lee, Hong-Suk;Kwon, Yong-Woong
    • Korean Journal of Weed Science
    • /
    • v.3 no.2
    • /
    • pp.156-165
    • /
    • 1983
  • This experiment was conducted to find out the effect of competitive duration and density of Cyperus serotinus Rottb. on rice growth and yield. In plant height of both rice and flatsedge, the compacter density of flatsedge, the higher was plant height. Rice in the 50 days competition with flatsedge had shorter culm than in other competition plots at all density. The panicle number was affected during the tillering stage. The spikelet number per panicle was influenced from 25 days to 50 days after transplanting. Grain maturity ratio and 1,000 grain-weight didn't decrease under competition before 50 days after transplanting. The competition during the tillering stage to the young panicle initiation stage decreased significantly rice yield. The rice competed with low density of flat sedge showed small decrement of yield and its components. The period reaching to maximum stem number of flatsedge become shorter as flatsedge density increased. Number of flatsedge tubers competed with rice produced was 40.1, 16.8 and 11.4 times as much in 1: 1, 1:3 and 1:5 density ratio of rice to flatsedge, respectively. Flatsedge dry matter weight and rough rice yield had the relationship of Y = 601. 95-$0.67x^{**}$.

  • PDF

Study on the Effect of Deep Fertilization on Paddy Field - Efficiency of Ball Complex Fertilizer Mixed with Zeolite - (수도(水稻)에 대(對)한 심층추비효과(深層追肥効果)에 관(關)한 연구(硏究) - Zeolite 첨가(添加) Ball complex 비료(肥料)의 비효(肥効) -)

  • Kim, Tai-Soon;U., Zang-Kual
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.61-67
    • /
    • 1977
  • A study was conducted in order to compare the topdressing method of the conventional fertilizers as control and the deep application method of the ball complex fertilizer newly developed. The ball complex fertilizer consisted of 5% of nitrogen, 5% of phosphorus, and 7% of potassium. Basal application of nitrogen for the rice plant was the same for both control plots and ball complex plots. One ball complex fertilizer per four hills was applied at depth of 12~13cm 35days before heading stage while control plot received three times topdressing at different growth stages as usual practice. The results obtained were as follows. 1. The ball complex fertilizer applied in the soil was continuously utilized by the rice plants until harvest time while nitrogen and potassium uptake of control plots was reduced rapidly after heading stage. Daily uptake of nitrogen and potassium per hill at maturing stage were 0.45mg and 0.68mg in control plots, but 4.80mg and 7.0mg respectively in ball complex plots. 2. Dry matter productivity of the rice plant in control plots, well coinciding with nutrients uptake pattern, was maximum just after heading stage decreased at maturing stage. But dry matter productivity in ball complex plots was much higher at maturing stage than at heading stage. 3. Ball complex application increased effective tillering rate, causing higher panicle number per hill. 4. Ball complex application brought about 528kg/10a of hulled grain yield while the conventional practice 423kg/10a. 5. Deep application of ball complex was superior to usual practice in terms of yield components such as panicle number per hill, filled grain number per panicle, maturing rate, and 1,000 grain weight. 6. From the morphological characteristics point of view, the deep application of ball complex made the flag leaf and the 2nd leaf heavier, larger and broader as compared to control treatment. 7. It is considered that by applying the ball complex fertilizer at depth of 12~13cm sufficient amount of nitrogen and potassium could be utilized by rice plants during the maturing stage and assimilated in the leaf blade, consequently making the flag leaf and the 2nd leaf bigger and healthier. The fact can easily explain that the ball complex plots had higher capacity of photosynthesis, less discoloration of lower leaves, bigger leaf area index, and better grain yield as compared to the conventional practice. In conclusion the deep application method of the ball complex fertilizer was superior to the routine topdressing method of the usual fertilizers.

  • PDF

Effects of Dense Planting on the Growth and Producivity in Hot Pepper(Capsicum annum L.) (재식밀도(裁植密度)가 고추의 생육(生育) 및 생산성(生産性)에 미치는 영향(影響))

  • Kim, Kwang-Yong;Park, Sang-Keun;Lim, Sang-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.2 no.1
    • /
    • pp.45-54
    • /
    • 1983
  • This experiment was carried out to investigate effects of dense planting on the growth and productivity in varieties of hot pepper at open field. Three varieties (Joseng jinheung, Weonkyo No. 304 and Bulam house Putgochu) were sowed on Jan. 30th and transplanted on May 12th. The planting densities used were 3,300, 5,500 and 8,300 plants per 10a. The results obtained are as follows: 1) With higher plant density, the plant shape was changed from open-type to upright-type and the yield was increased, presumably due to the increase of leaf area index. 2) LAI and SLA per unit area were increased by denser planting. Wonkyo No. 304 presented the highest LAI and the lowest SLA. 3) Dry matter weight per unit area was also increased, however the LW/SW ratio was tended to decrease on denser planting. 4) Through crop growth analysis, it was determined that CGR and NAR were increased during the early growth stages and became decreased from last June. 5) Light intensity under the canopy formed by denser planting was decreased by 40% measured at 60 ㎝ above the soil surface. The vertical distribution of fruits became concentrated the upper part of plant. Fruit yield per unit area in denser planting was increased as compared to the conventional planting. The number of fruit setting decreased. 6) Generally, no differences in yield were detected in comparison between denser planting and conventional planting harvested on Aug. 30th and Oct. 15th, respectively. But Weonkyo No. 304 increased yield by 18% in denser planting.

  • PDF

Growth and Useful Component of Angelica gigas Nakai under High Temperature Stress (고온 스트레스에 따른 참당귀의 생육 및 유용성분 특성)

  • Jeong, Dae Hui;Kim, Ki Yoon;Park, Sung Hyuk;Jung, Chung Ryul;Jeon, Kwon Seok;Park, Hong Woo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.287-296
    • /
    • 2021
  • Recently, the pace of global climate change has tremendously increased, causing extreme damage to crop production. Here, we aimed to examine the growth characteristics and useful components of Angelica gigas under extreme heat stress, providing fundamental data for its efficient cultivation. Plants were exposed to various experimental temperatures (28℃, 34℃, and 40℃), and their growth characteristics and content of useful components were analyzed. At the experimental site, the ambient and soil temperature were 19.38℃ and 21.34℃, ambient and soil humidity were 81.3 % and 0.18 m3/m3, solar radiation was 162.05 W/m2. Moreover, the soil was sandy-clay-loam (pH 6.65), with 2.66% organic matter, 868.52 mg/kg soil available phosphate, and 0.14% nitrogen. Values of most growth characteristics, including the survival rate (85%), plant height (38.66cm), and fresh and dry weight (41.3 g and 14.24 g), were the highest at 28℃. Although the highest content of useful components was observed at 34℃ (3.24%), there were no significant differences across temperatures. Growth characteristics varied across temperatures due to detrimental effects of heat stress, such as accelerated tissue aging, reduced photosynthesis, and delay of growth. Similar content of useful components across temperatures may be due to poor accumulation of anabolic products caused by impaired growth at extremely high temperatures.

Effect of Organic Substrates Mixture Ratio on 2-year-old Highbush Blueberry Growth and Soil Chemical Properties (유기자재 종류별 혼합비율이 2년생 하이부시 블루베리의 유목 생육과 토양환경에 미치는 영향)

  • Kim, Hong-Lim;Kim, Hyoung-Deug;Kim, Jin-Gook;Kwack, Yong-Bum;Choi, Young-Hah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.858-863
    • /
    • 2010
  • The blueberry farming requires the soil condition of well-drainage, pH of 4.5 to 5.2, and high in organic matters for stable growth and development. Most of soil type of cultivated land in Korea, however, belongs to alkaline soils with low organic matter content and poor drainage. Therefore, the blueberry farmers use peat moss heavily to improve the soil condition, but the guideline on the effective and economic ratio of peat moss is not established yet. This study was performed to determine the cost effective peat moss ratio for amending soils, and to investigate the feasibility of using sawdust and coco peat as soil amendments. Peat moss, coco peat and sawdust are mixed with soil at the ratio of 0, 12.5, 50 and 100% (v/v). Among 3 organic materials with various mixture ratios, the pH of soil was the lowest in 100% peat moss and sawdust mixtures (pH 3.67 and pH 3.73, respectively), followed by pH 5.30 at 50% peat moss. The soil organic matter content are directly proportional to the mixture ratios in all three organic materials and the same trend was observed in the variation of content of exchangeable potassium in the coco peat treatments. On the contrary, the content of available phosphate, exchangeable calcium and magnesium decreased with increasing the ratio of organic materials. The nitrogen content in the leaves decreased as increasing the ratio of peat moss and coco peat in soil, but not of sawdust. The content of phosphate decreased but potassium increased as the ratio of sawdust and coco peat increased. There was no clear difference in the contents of magnesium and calcium among 3 organic materials. The plant height, stem diameter and dry weight of blueberry plants were the highest in 50 % peat moss, followed by 12.5% peat moss and 12.5% coco peat. The plants in 100% peat moss showed very poor growth. It can be concluded that peatmoss, when applied and managed appropriately, will be a good material for improving soil condition as well as securing desirable growth for blueberry. Upon coupling economic aspect, the optimum mixing ratio of peatmoss for blueberry farming is approximately 25-50%.

Influence of Soil Texture and Bulk Density on Root Growth Characteristics and Nutrient Influx Rate of Soybean Plant (토성(土性)과 용적밀도(容積密度)가 대두(大豆)의 뿌리 생장특성(生長特性)과 양분흡수기능(養分吸收機能)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 1989
  • This study was conducted to understand the influence of soil compaction on root growth and nutrient uptake characteristics of the soybean roots grown in two soils with different texture. Tap root elongation was measured on young seedling grown in cores compacted to different bulk densities of 1.2, 1.4 and $1.6/cm^3$ with different soil water retention in laboratory. The soil used were Samgag sandy loam and Baegsan loam soils. The wet and dry weight, total length, average radius and total surface area of roots were measured on soybean plants grown in 1/5000 a Wagner pots compacted to different bulk density of 1.2 and $1.4g/cm^3$. The nutrient uptake of soybean shoot was measured and evaluated with the unit surface area of roots at the 7th, 17th and 27th days after germination. The results were as follows: 1. The tap root elongation rate was faster in the loam soil with low bulk density than in the sandy loam soil with high bulk density. The elongation rates were remarkedly decreased when soil water was lower than the retention of 4 bars in loam soil and that of 1 bars in sandy loam soil. 2. Tap root elongation rate sharply decreased as increased soil strength higher than $2kgf/cm^2$ measured by ELE penetrometer showing curvillinear regression. However, it was low regardless of soil strength when soil water retention was 10 bars in sandy loam soil. 3. From the pot experiment, the total length of roots were longer in loam soil than in sandy loam soil and was longer in the soils with lower bulk density. The average radius of fine roots grown in sandy loam soil was larger than that grown in loam soil. The total surface area of roots was greater in the loam soil with low bulk density than in the sandy loam soil with high bulk density as the total length of roots. 4. The amounts of nutrient uptake by soybean shoots were greater in loam soil primarily due to more production of dry matter than in sandy loam soil. The nitrogen influx rates through the unit surface area were 597 to $753nmoles/day-cm^2$ in loam soil and 222 to $365nmoles/day\;cm^2$ in sandy loam soilshowing higher value in higher bulk density. The potasium influx rates were 99 to $175nmoles/day-cm^2$, and those of phosphate were 26 to $46nmoles/day\;cm^2$. Those of Ca and Mg were 175 to 246 and 163 to $205nmoles/day\;cm^2$. The difference in nutrient influx rates between bulk densities of these elements were lower than that of nitrogen.

  • PDF

Effects of Application of Controlled Release Fertilizer Blended with Different Nitrogen Releasing Latex Coated Ureas on Rice Growth and Grain Quality (질소 용출속도가 다른 피복요소를 혼합한 완효성비료 시용이 벼 생육 및 쌀 품질에 미치는 영향)

  • Lee, Dong-Wook;Park, Ki-Do;Park, Chang-Young;Kang, Ui-Gum;Son, Il-Soo;Park, Sung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.311-319
    • /
    • 2007
  • This study was conducted to estimate effects of application of controlled release complex fertilizer with latex coated urea (LCU-complex) on growth and grain quality of rice under direct seeded on dry paddy (DS) and transplanted on flooding paddy (TP). Three types of latex coated urea different nitrogen (N) releasing were LCU40, LCU80 and LCU100. The time of N releasing of LCU formulations in water at both 20 and $30^{\circ}C$ was faster in the order of LCU40, LCU80, LCU blend (LCU40, LCU80 and LCU100 was mixed in ratio of 2:2:1), and LCU100. The number of tillers and dry matter weight were great in order of LCU-complex 100% > LCU-complex80% > urea and plant height was not significant. Grain yields at LCU-complex80% in both DS and TP plot were similar to those of urea application. N recovery of LCU-complex80% and 100% was improved 8 and 6% compared to that of conventional urea split application in DS plot and 9 and 4% in TP. Content of protein of grain at applied LCU-complex was less 0.8% and $0.1{\sim}0.7%$ than that of urea in DS and TP, respectively. Content of amylose and Mg/K ratio in rice grain was not significant. Consequently application of LCU-complex blended types of coated urea different N releasing can be reduced 20% of N without yield reduction and improved grain quality compared with urea application.

The Effects of Seeding Pattern and Rate on the Yield and Agronomic Characters of Barley Under Different Cultural Conditions (대맥의 파종양식 및 파종밀도가 몇가지 재배조건하에서의 수량 및 주요실용형질에 미치는 영향)

  • Pyeong-Ki Yim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.21 no.1
    • /
    • pp.136-179
    • /
    • 1976
  • Effects of seeding pattern and rate on the yield and some agronomic characters of barley under different cultural conditions were observed at Suweon, Daejeon and Jinju during the barley growing season from 1972 to 1974. Plant height and culm length were increased by dense seeding, shading, heavy fertilization, moving location down to the lower latitude. The tiller number per plant, dry matter weight, leaf number on main stem, percentage of valid tillers, RGR, NAR, and $R_{A}$ were increased by heavy fertilization, sparse seeding, reduced furrow width and drilling likewise the length, width and angle of leaf. The newer cultivar had higher RGR and NAR. The higher yielding cultivars had higher potential for carbohydrate assimilating ability. Straw weight and grain yield were increased by dense seeding, reduced furrow width, drilling, heavier fertilization and moving the location to the south, and then decreased by shading and late seeding. High yield increase by drilling was found in late seeding. The optimum seeding rate for the yield increase were 15l/10a for furrow and 25l/10a for drilling. The spike number type cultivars were favourable for the sparse seeding and the spike weight type cultivars seemed to be suitable to the dense seeding, The repeatability of days to heading due to location and fertilizer level was higher than that of seeding time and seeding method. Repeatability of culm length was extremly high in seeding method and comparatively high in fertilizer level while low in location. The repeatability of yield due to location and seeding methods was comparatively high, but the tendency was different along with different cultivars. Also the repeatability of yield due to the fertilizer level was generally high except cultivar Haganemngi.

  • PDF