• Title/Summary/Keyword: Plant Volume Ratios

Search Result 28, Processing Time 0.023 seconds

Nitrogen Removal Characteristics of Swine Wastewater when treating by MLE Process (MLE 공정을 이용한 양돈폐수의 질소 제거 특성)

  • Park, Seung Kyun;Park, Hyun Su;Lee, Ki Gong;Chung, Yoon Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.147-156
    • /
    • 2000
  • In this study, the optimal operation parameters of MLE(Modified Ludzack-Ettinger) process treating the liquid supernatant separated from the slurry excreta of swine feedlot was studied as a promising biological treatment process. The nitrogen removal characteristics with different volume ratio between nitrification and denitrification reactor and the operational effect with different nitrogen loading rate, and different C/N($COD_{Cr}/TKN$) ratio were investigated. Based on the laboratory results, pilot MLE plant was operated to examine the effect of ambient temperature for five months including winter. The denitrification reactor which is 20% of total volume was proposed as the most optimal volume fraction for nitrification and denitrification. The optimum ratios of F/M and $F_N/M$ were increased with increase of the C/N ratio. However, optimum F/M ratio was changed more rapidly than $F_N/M$ ratio with increase of the C/N ratio. Therefore, MLE process is desirable to be controlled by F/M ratio in the range of high C/N ratio and by $F_N/M$ ratio in the range of low C/N ratio. Pilot MLE plant showed the higher removal efficiencies of COD and TKN in winter than in summer and was operated most stably at the temperature of $20{\sim}25^{\circ}C$ for mixed liqour.

  • PDF

Constant Ratios of Total Chloroplast Volume to Cell Volume in Tobacco and Arabidopsis thaliana at Various Developmetal Stages (담배와 애기장대의 발달단계에 따른 세포부피에 대한 엽록체의 총 부피의 일정한 비율)

  • 정원중;박연일;박주현;민성란;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.6
    • /
    • pp.311-315
    • /
    • 2001
  • The relationship among leaf size, leaf protoplast (cell) size, chloroplast size, and chloroplast number were investigated in tobacco and Arabidopsis thaliana at various developmental stages. In tobacco, protoplasts, less than 15.6 ${\mu}{\textrm}{m}$ in diameter had less than 20 chloroplasts, 0.93 ${\mu}{\textrm}{m}$ in thickness and 3.3 ${\mu}{\textrm}{m}$ in length on average. As protoplast size increased from 30 ${\mu}{\textrm}{m}$ to 45 ${\mu}{\textrm}{m}$ in diameter, chloroplast size remained the same (1.57 ${\mu}{\textrm}{m}$ in diameter and 5.55 ${\mu}{\textrm}{m}$ in length on average), but chloroplast number increase from 42 to 101 on average. A similar relationship was also observed in A. thaliana. The ratio of total chloroplast volume to protoplast volume was constant (0.105 in tobacco and 0.325 in A. thaliana) over various developmental stages.

  • PDF

Changes in Physico-chemical Properties of Moss Peat Based Root Media and Growth of Potted Chrysanthemums as Influenced by Blending Ratios of Root Media in a C-channel Mat Irrigation System

  • Kang, Seung-Won;Hong, Jong-Won;Lee, Gung-Pyo;Seo, Sang-Gyu;Pak, Chun-Ho
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.201-210
    • /
    • 2011
  • This experiment was conducted to investigate physical and chemical characteristics by volume fractions of root media using peatmoss, perlite, and vermiculite, along with effects on the growth of pot chrysanthemums (Dendranthema ${\times}$ grandiflorum 'Vemini') in a C-channel mat irrigation system. To evaluate the physico-chemical properties of 20 root media, the bulk density, particle density, total pore space, pore space, ash content, organic matter, pH, and electrical conductivity were measured and data were analyzed using principal component analysis (PCA). PCA scores revealed that physico-chemical properties changed by the blending of peatmoss, perlite, and vermiculite. The 20 root media were divided into three main groups by hierarchical cluster analysis. At the end of the experiment, the pH and EC of the root media were measured from media divided into four layers. The pH of root media without plants showed a strong linear relationship and the pH of root media with plants increased exponentially. The change of EC in the root medium was indicated as a hyperbolic curve. Plant growth characteristics according to growth in the 20 root media were analyzed by PCA. It was found that the mixing ratios of the root media affected plant growth characteristics. Therefore, mixing ratio is an important factor for pot-plant production in a subirrigation system.

Effect of Root Media Formulation and Fertilizer Application on Potato Plug Seedling Growth and Field Performance

  • Kang, Bong-Kyoon;Kang, Young-Kil;Kang, Si-Yong;Park, Yang-Mun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.125-129
    • /
    • 2001
  • Eight vermiculite-based root media prepared with addition of complete fertilizer (2 g/L; N-$P_2$$O_5$-$K_2$O, 10-10-14) for potatoes (Solanum tuberosum L.) and a commercial root medium were evaluated in 2000 to develop the root media suitable for potato plug seedling production. The eight media consisted of various ratios of vermiculite, perlite, peatmoss, and compost. In addition, four rates (0, 1, 2, or 4 g/L) of the complex fertilizer for potato were added to a root medium (70% vermiculite, 10% perlite, 10% peat moss, and 10% compost by volume) to determine the optimum addition rate of the complex fertilizer for plug seedlings. Compost addition to the media increased plant height, the number of leaves per plant, and top and root fresh weight of 15-day old plug seedlings. The seedlings raised in root media containing compost produced significantly higher total tuber yield. Addition of the complex fertilizer to root media enhanced seedling growth and increased the number of tubers per plant and tuber yields. The results suggest that root media containing 50% vermiculite, 0 to 20% peat moss, 10% perlite, 20 to 40% compost, and 2 g/L complex fertilizer for potato appear suitable for potato plug seedling production.

  • PDF

Improvement in Plume Dispersion Formulas for Stack Emissions Using Ground-based Imaging-DOAS Data

  • Lee, Hanlim;Ryu, Jaeyong;Jeong, Ukkyo;Noh, Youngmin;Shin, Sung Kyun;Hong, Hyunkee;Kwon, Soonchul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3427-3432
    • /
    • 2014
  • This study introduces a new method of combining Imaging Differential Optical Absorption Spectroscopy (Imaging-DOAS) data and plume dispersion formulas for power plant emissions to determine the three-dimensional structure of a dispersing pollution plume and the spatial distributions of trace gas volume mixing ratios (VMRs) under conditions of negligible water droplet and aerosol effects on radiative transfer within the plume. This novel remote-sensing method, applied to a power plant stack plume, was used to calculate the two-dimensional distributions of sulfur dioxide ($SO_2$) and nitrogen dioxide ($NO_2$) VMRs in stack emissions for the first time. High $SO_2$ VMRs were observed only near the emission source, whereas high $NO_2$ VMRs were observed at locations several hundreds of meters away from the initial emission. The results of this study demonstrate the capability of this new method as a tool for estimating plume dimensions and trace gas VMRs in power plant emissions.

On the Growth of the Surface Area of Isolated Young Trees, Alnus tinctoria Sargent (산오리나무 고립목의 표면적성장에 대하여)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.16 no.1_2
    • /
    • pp.1-5
    • /
    • 1973
  • Six young trees of Alnus tinctoria grown in isolation, each having different growing stage, were selected and the surface area of their roots, stems and leaves was determined. Each of the roots of more than 0.2mm in diameter and stems was cut at intervals of 10cm and their surface area was calculated with 2$\pi$rl from the average diameter (2r) of both sections (upper and lower) by making cylindrical estimation of the cut pieces. The leaf area measured was only one side area, and the volume of cut piece and amount of dry matter of each organ were also measured. The percentage to the surface area of the whole plant body by each organ was 4-12% in root, 7-9% in stem and 69-89% in leaf, respectively. There was relatively a little individual difference. However, the surface area ratios of root and stem showed a slightly increasing tendency while that of leaf decreasing according to the growing stage. The ratio of sum leaf area index (LAIi) was 2.3-4.0$m^2$/$m^2$-and that of the surface area index(SaIi) was 0.16-0.33$m^2$/$m^2$, respectively. It has been known that the stem surface area(SAI) to the leaf area index(LAI) is within the range of 31-53%, but the SAIi is within the range of 8-11% of the LAIi.

  • PDF

Effect of Mixed Bed Soil on Growth of Aerial Parts and Roots of Daughter Pants for Nursery Field Srawberry Seedling Raising with Expanded Rice-hull (딸기 팽연왕겨 차근육묘를 위한 혼합상토 조성이 자묘의 지상부 생육과 발근에 미치는 영향)

  • Park, Gab-Soon;Kim, Young-Chil;Kim, Myung-Seon;Ann, Seoung-Won
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.189-196
    • /
    • 2015
  • This study was performed to identify the effect of mixed bed soil on growth of aerial parts and root zone of daughter plants for nursery field strawberry seedling raising with expanded chaff. The plant height and leaf area of daughter plants were highest or largest in the mixed soil of ERH +RH (100:0, v/v), followed by ERH+RH (75:25). The higher the mixing ratio of RH, the shorter the plant height or the smaller the leaf area. A similar tendency was observed in fresh weight. Within a root diameter of 0-0.4 mm and a root height range of 0.4-0.8 mm, root surface area and volume were statistically significantly better with treatment of ERH+RH (100:0, v/v) compared to those of roots treated with ERH+RH (75:25), ERH+RH (50:50) and ERH+RH (25:75). The growth rate of aerial parts and root zone of daughter plants were noticeably lower in two mixing ratios of 50:50 and 25:75. According to the mixing ratios of ERH+CD surface treatment, the number of roots was greatest in plants treated with ERH+CD (80:20, v/v) and ERH+CD (85:15) on August 1. However, the number of roots was highest in plants treated with ERH+CD (85:15, v/v) on August 15. Root length was longest in the plant with no treatment, and drastically shortened from ERH+CD (90:10, v/v) in both surface and mixed treatment. Although root weight showed a significant difference in ERH+CD (90:10, v/v) treatment, its increase was gradual. The rate of root growth was highest in ERH+CD (85:15). These study findings suggest that the content ratios of mixed soil ERH+RH (75:25, v/v) or below and ERH+CD (85:15) are thought to be desirable for the production of high quality seedlings.

Thermal Flow Characteristics of a Hybrid Plant Factory with Multi-layer Cultivation Shelves (다층 재배선반을 갖는 하이브리드 식물공장의 열유동 특성)

  • Yoon, Ji-Hwan;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7990-8000
    • /
    • 2015
  • Plant factories are plant cultivation systems which produce farm products uniformly under the controlled environmental condition regardless of seasons and places. Thermal flow in the plant factory is an important parameter in cultivating plants. In this research, we study thermal flow characteristics for a hybrid plant factory with multi-layer cultivation shelves using computer simulation techniques. In order to obtain numerical solutions for thermal flow characteristics, a finite volume method was applied. We consider a low-Reynolds-number ${\kappa}-{\epsilon}$ turbulence model, incompressible viscous flows, and pressure boundary conditions for numerical simulation. Commercial software Solid Works Flow Simulation is then used to investigate characteristics of thermal flows in the plant factory applying several different inflow air velocities and arrangements of cultivation shelves. From numerical analysis results, we found that temperatures in cultivation shelves were uniformly distributed for Case 3 when the inflow air velocity was 1.6 m/s by using a blower in the plant factory. However in Case 1 lower temperature distributions were observed in test beds, TB2 and TB3, which indicated that additional temperature control efforts would be required. Average shelf temperature increased by $3^{\circ}C$ using artificial light source (DYLED47) with 50% blue and 50% red LED ratios. Korea Academia-Industrial cooperation Society.

Effects of the Mixing Ratio of the Different Substrates and the Concentration of Fertigation in Nutrient Solution on the Growth of Tomato Plug Seedlings (배지의 혼합비율과 관비 양액 농도가 토마토 플러그묘의 생장에 미치는 영향)

  • Kim, Hong-Gi;Cho, Ja-Yong;Yu, Sung-Oh;Yang, Seung-Yul;Kang, Jong-Gu;Heo, Buk-Gu
    • Journal of Bio-Environment Control
    • /
    • v.16 no.2
    • /
    • pp.108-114
    • /
    • 2007
  • This study was conducted to clarify the effects of the different mixing ratios of substrate mixtures based on peat moss and the concentration of nutrient solution on the growth of tomato (Lycopersicon esculentum Mill.) seedlings. Substrates such as peat moss, rice hull, carbonized rice hull, decomposed sawdust, perlite and granular rock wool were mixed and used. The concentration of nutrient solution were adjusted to EC $0.5{\sim}1.5mS/cm$. The volumetric moisture contents became higher as peat moss mixed were much more. Total porosities in all substrate mixtures were over 80%, and pH in substrate mixtures became lower as the volume of peat moss mixed higher. Mixing ratios of substrates suitable for the production of tomato seedlings with the higher quality were peat moss:rice hull:carbonized rice hull:decomposed sawdust:perlite=25:10:25:20:20(v/v). The plant growth was not significant among the different substrate mixtures. However, plant growth such as plant height, leaf area, and total dry weight became significantly increased as EC increasing.

Growth, Flowering, and Nutrient Composition of Salvia Grown in Peat moss Media Containing Pellets Processed with Poultry Feather Fibers at Different Mixing Ratios

  • Yoo, Yong Kwon;Kim, In Kyung;Roh, Mark S.;Roh, Yong Seung;Huda, Masud
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.289-299
    • /
    • 2017
  • The objective of this study was to determine the effect of replacing perlite (PL) with pellets processed with poultry feather fiber as an inert material to prepare growing medium. The growth and flowering of Salvia splendens 'Vista Red' grown in individual growing medium $Biosangto^{(R)}$, peat moss (PM), PL, and two pellets (P45-1 and P45-2) were evaluated. Peat moss was mixed with PL, P45-1, or P45-2 at various ratios (1:0 to 1:3 or 3:1 by volume) to investigate the feasibility of replacing PL with pellets. Nutrient composition of the growing medium and leaf tissues was analyzed. The number of florets, inflorescence length, plant height, and fresh weight of plants grown in media containing P45-1 or P45-2 were reduced compared to those grown in individual growing medium PM or PL. As the mixing ratio of P45-1 or P45-2 to PM was higher, the growth of salvia, such as inflorescence length, plant height, number of leaves, and fresh weight was inhibited. Our results indicate that mixing three parts PM with one part of P45-1 (PM/P45-1/3:1) or P45-2 (PM/P45-2/3:1) accelerated flowering and increased the number of florets and leaves compared to other mixing ratios of PM and pellets media. The concentrations of phosphorus (P), calcium (Ca), boron (B), iron (Fe), and copper (Cu) in individual growing medium PL, P45-1, and P45-2 were significantly lower than those in PM. The concentration of N was the highest in leaves of plants grown in P45-1 or P45-2 amended media, and the concentrations of P, Ca, and zinc (Zn) in leaves were lower in individual growing medium P45-1 or P45-2 than in PM and PL. The pH of PM/P45-1/3:1 or PM/P45-2/3:1 media was maintained at optimal level (5.8-5.9) and the concentrations of macro- and micro-elements in the media and leaves were considered to be optimal levels. Therefore, mixing three parts PM with one part P45-1(PM:P45-1/3:1) or P45-2 (PM:P45-2/3:1) is recommended for improved growth and flowering in salvia. This suggests that P45-1 or P45-2 can replace PL as an inert material to prepare growing medium.