• 제목/요약/키워드: Plant Village Dataset

검색결과 8건 처리시간 0.021초

VGG16을 활용한 미학습 농작물의 효율적인 질병 진단 모델 (An Efficient Disease Inspection Model for Untrained Crops Using VGG16)

  • 정석봉;윤협상
    • 한국시뮬레이션학회논문지
    • /
    • 제29권4호
    • /
    • pp.1-7
    • /
    • 2020
  • 농작물 질병에 대한 조기 진단은 질병의 확산을 억제하고 농업 생산성을 증대하는 데에 있어 중요한 역할을 하고 있다. 최근 합성곱신경망(convolutional neural network, CNN)과 같은 딥러닝 기법을 활용하여 농작물 잎사귀 이미지 데이터세트를 분석하여 농작물 질병을 진단하는 다수의 연구가 진행되었다. 이와 같은 연구를 통해 농작물 질병을 90% 이상의 정확도로 분류할 수 있지만, 사전 학습된 농작물 질병 외에는 진단할 수 없다는 한계를 갖는다. 본 연구에서는 미학습 농작물에 대해 효율적으로 질병 여부를 진단하는 모델을 제안한다. 이를 위해, 먼저 VGG16을 활용한 농작물 질병 분류기(CDC)를 구축하고 PlantVillage 데이터세트을 통해 학습하였다. 이어 미학습 농작물의 질병 진단이 가능하도록 수정된 질병 분류기(mCDC)의 구축방안을 제안하였다. 실험을 통해 본 연구에서 제안한 수정된 질병 분류기(mCDC)가 미학습 농작물의 질병진단에 대해 기존 질병 분류기(CDC)보다 높은 성능을 보임을 확인하였다.

Unsupervised Transfer Learning for Plant Anomaly Recognition

  • Xu, Mingle;Yoon, Sook;Lee, Jaesu;Park, Dong Sun
    • 스마트미디어저널
    • /
    • 제11권4호
    • /
    • pp.30-37
    • /
    • 2022
  • Disease threatens plant growth and recognizing the type of disease is essential to making a remedy. In recent years, deep learning has witnessed a significant improvement for this task, however, a large volume of labeled images is one of the requirements to get decent performance. But annotated images are difficult and expensive to obtain in the agricultural field. Therefore, designing an efficient and effective strategy is one of the challenges in this area with few labeled data. Transfer learning, assuming taking knowledge from a source domain to a target domain, is borrowed to address this issue and observed comparable results. However, current transfer learning strategies can be regarded as a supervised method as it hypothesizes that there are many labeled images in a source domain. In contrast, unsupervised transfer learning, using only images in a source domain, gives more convenience as collecting images is much easier than annotating. In this paper, we leverage unsupervised transfer learning to perform plant disease recognition, by which we achieve a better performance than supervised transfer learning in many cases. Besides, a vision transformer with a bigger model capacity than convolution is utilized to have a better-pretrained feature space. With the vision transformer-based unsupervised transfer learning, we achieve better results than current works in two datasets. Especially, we obtain 97.3% accuracy with only 30 training images for each class in the Plant Village dataset. We hope that our work can encourage the community to pay attention to vision transformer-based unsupervised transfer learning in the agricultural field when with few labeled images.

Plants Disease Phenotyping using Quinary Patterns as Texture Descriptor

  • Ahmad, Wakeel;Shah, S.M. Adnan;Irtaza, Aun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3312-3327
    • /
    • 2020
  • Plant diseases are a significant yield and quality constraint for farmers around the world due to their severe impact on agricultural productivity. Such losses can have a substantial impact on the economy which causes a reduction in farmer's income and higher prices for consumers. Further, it may also result in a severe shortage of food ensuing violent hunger and starvation, especially, in less-developed countries where access to disease prevention methods is limited. This research presents an investigation of Directional Local Quinary Patterns (DLQP) as a feature descriptor for plants leaf disease detection and Support Vector Machine (SVM) as a classifier. The DLQP as a feature descriptor is specifically the first time being used for disease detection in horticulture. DLQP provides directional edge information attending the reference pixel with its neighboring pixel value by involving computation of their grey-level difference based on quinary value (-2, -1, 0, 1, 2) in 0°, 45°, 90°, and 135° directions of selected window of plant leaf image. To assess the robustness of DLQP as a texture descriptor we used a research-oriented Plant Village dataset of Tomato plant (3,900 leaf images) comprising of 6 diseased classes, Potato plant (1,526 leaf images) and Apple plant (2,600 leaf images) comprising of 3 diseased classes. The accuracies of 95.6%, 96.2% and 97.8% for the above-mentioned crops, respectively, were achieved which are higher in comparison with classification on the same dataset using other standard feature descriptors like Local Binary Pattern (LBP) and Local Ternary Patterns (LTP). Further, the effectiveness of the proposed method is proven by comparing it with existing algorithms for plant disease phenotyping.

Novel Category Discovery in Plant Species and Disease Identification through Knowledge Distillation

  • Jiuqing Dong;Alvaro Fuentes;Mun Haeng Lee;Taehyun Kim;Sook Yoon;Dong Sun Park
    • 스마트미디어저널
    • /
    • 제13권7호
    • /
    • pp.36-44
    • /
    • 2024
  • Identifying plant species and diseases is crucial for maintaining biodiversity and achieving optimal crop yields, making it a topic of significant practical importance. Recent studies have extended plant disease recognition from traditional closed-set scenarios to open-set environments, where the goal is to reject samples that do not belong to known categories. However, in open-world tasks, it is essential not only to define unknown samples as "unknown" but also to classify them further. This task assumes that images and labels of known categories are available and that samples of unknown categories can be accessed. The model classifies unknown samples by learning the prior knowledge of known categories. To the best of our knowledge, there is no existing research on this topic in plant-related recognition tasks. To address this gap, this paper utilizes knowledge distillation to model the category space relationships between known and unknown categories. Specifically, we identify similarities between different species or diseases. By leveraging a fine-tuned model on known categories, we generate pseudo-labels for unknown categories. Additionally, we enhance the baseline method's performance by using a larger pre-trained model, dino-v2. We evaluate the effectiveness of our method on the large plant specimen dataset Herbarium 19 and the disease dataset Plant Village. Notably, our method outperforms the baseline by 1% to 20% in terms of accuracy for novel category classification. We believe this study will contribute to the community.

심층 신경망 기반의 앙상블 방식을 이용한 토마토 작물의 질병 식별 (Tomato Crop Disease Classification Using an Ensemble Approach Based on a Deep Neural Network)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제23권10호
    • /
    • pp.1250-1257
    • /
    • 2020
  • The early detection of diseases is important in agriculture because diseases are major threats of reducing crop yield for farmers. The shape and color of plant leaf are changed differently according to the disease. So we can detect and estimate the disease by inspecting the visual feature in leaf. This study presents a vision-based leaf classification method for detecting the diseases of tomato crop. ResNet-50 model was used to extract the visual feature in leaf and classify the disease of tomato crop, since the model showed the higher accuracy than the other ResNet models with different depths. We propose a new ensemble approach using several DCNN classifiers that have the same structure but have been trained at different ranges in the DCNN layers. Experimental result achieved accuracy of 97.19% for PlantVillage dataset. It validates that the proposed method effectively classify the disease of tomato crop.

농작물 질병분류를 위한 전이학습에 사용되는 기초 합성곱신경망 모델간 성능 비교 (Performance Comparison of Base CNN Models in Transfer Learning for Crop Diseases Classification)

  • 윤협상;정석봉
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.33-38
    • /
    • 2021
  • Recently, transfer learning techniques with a base convolutional neural network (CNN) model have widely gained acceptance in early detection and classification of crop diseases to increase agricultural productivity with reducing disease spread. The transfer learning techniques based classifiers generally achieve over 90% of classification accuracy for crop diseases using dataset of crop leaf images (e.g., PlantVillage dataset), but they have ability to classify only the pre-trained diseases. This paper provides with an evaluation scheme on selecting an effective base CNN model for crop disease transfer learning with regard to the accuracy of trained target crops as well as of untrained target crops. First, we present transfer learning models called CDC (crop disease classification) architecture including widely used base (pre-trained) CNN models. We evaluate each performance of seven base CNN models for four untrained crops. The results of performance evaluation show that the DenseNet201 is one of the best base CNN models.

심층 CNN 기반 구조를 이용한 토마토 작물 병해충 분류 모델 (Tomato Crop Diseases Classification Models Using Deep CNN-based Architectures)

  • 김삼근;안재근
    • 한국산학기술학회논문지
    • /
    • 제22권5호
    • /
    • pp.7-14
    • /
    • 2021
  • 토마토 작물은 병해충의 영향을 많이 받기 때문에 이를 예방하지 않으면 농업 경제에 막대한 손실을 초래할 수 있다. 따라서 토마토의 다양한 병해충의 진단을 빠르고 정확하게 진단하는 시스템이 요구된다. 본 논문에서는 ImageNet 데이터 셋 상에서 다양하게 사전 학습된 딥러닝 기반 CNN 모델을 적용하여 토마토의 9가지 병해충 및 정상인 경우의 클래스를 분류하는 시스템을 제안한다. PlantVillage 데이터 셋으로부터 발췌한 토마토 잎의 이미지 셋을 3가지 딥러닝 기반 CNN 구조를 갖는 ResNet, Xception, DenseNet의 입력으로 사용한다. 기본 CNN 모델 위에 톱-레벨 분류기를 추가하여 제안 모델을 구성하였으며, 훈련 데이터 셋에 대해 5-fold 교차검증 기법을 적용하여 학습시켰다. 3가지 제안 모델의 학습은 모두 기본 CNN 모델의 계층을 동결하여 학습시키는 전이 학습과 동결을 해제한 후 학습률을 매우 작은 수로 설정하여 학습시키는 미세 조정 학습 두 단계로 진행하였다. 모델 최적화 알고리즘으로는 SGD, RMSprop, Adam을 적용하였다. 실험 결과는 RMSprop 알고리즘이 적용된 DenseNet CNN 모델이 98.63%의 정확도로 가장 우수한 결과를 보였다.

딥러닝기반 토마토 병해 진단 서비스 연구 (A Study on the Deep Learning-Based Tomato Disease Diagnosis Service)

  • 조유진;신창선
    • 스마트미디어저널
    • /
    • 제11권5호
    • /
    • pp.48-55
    • /
    • 2022
  • 토마토 작물은 병해에 노출이 쉽고 단시간에 퍼지므로 병해에 대한 늦은 조치로 인한 피해는 생산량과 매출에 직접적인 영향을 끼친다. 따라서, 토마토의 병해에 대해 누구나 현장에서 간편하고 정확하게 진단하여 조기 예방을 가능하게 하는 서비스가 요구된다. 본 논문에서는 사전에 ImageNet 전이 학습된 딥러닝 기반 모델을 적용하여 토마토의 9가지 병해 및 정상인 경우의 클래스를 분류하고 서비스를 제공하는 시스템을 구성한다. Plant Village 데이터 셋으로부터 토마토 병해 및 정상을 분류한 잎의 이미지 셋을 합성곱을 사용하여 조금 더 가벼운 신경망을 구축한 딥러닝 기반 CNN구조를 갖는 MobileNet, ResNet의 입력을 사용한다. 2가지 제안 모델의 학습을 통해 정확도와 학습속도가 빠른 MobileNet를 사용하여 빠르고 편리한 서비스를 제공할 수 있다.