• 제목/요약/키워드: Plant Trip

검색결과 118건 처리시간 0.031초

스위치야드 기기 신뢰도 군축방안 (Reliability Establishment Method of Switchyard Equipment)

  • 문수철;김건중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.51-53
    • /
    • 2007
  • The nuclear power plant uses the steam which occurs from reactor and T/G the drive. By the T/G in consequence of the fact that the electricity which is produced the power and supplies in transmission system. But, recently the transmission and generation system are placed under deregulation situation from domestic and foreign, the maintenance control is difficult with the accident or the breakdown which relates is increasing. Hereupon, considering for effect to the reactor core against trip element which it does apply a probability concept from the NRC of the United States and it study and the recognition for the importance of the switchyard which is a power equipment which will be revaluated. Hereupon using the American example, the reliability establishment method which is suitable in domestic and it searches it does.

  • PDF

신규노형 원전의 발전정지유발기기 선정을 위한 고장모드영향분석 (Failure Mode Effective Analysis for selection of Single Point Vulnerability in New type Nuclear Power Plant)

  • 현진우;염동운
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.31-36
    • /
    • 2014
  • For decreasing an unexpected shutdown of Nuclear Power Plants, Korea Hydro & Nuclear Power co.(KHNP) has developed Single Point Vulnerability(SPV) of NPPs since 2008. SPV is the equipment that cause reactor shutdown & turbine trip or more than 50% power rundown due to its malfunction. New type Nuclear Power Plants need to develop the SPV list, so performed the SPV selection for about 1 year. To develop this, Failure Mode Effect Analysis(FMEA) methods are used. As results of FMEA analysis, about 700 equipment are selected as SPV. Thereafter those are going to be applied to new type Nuclear Power Plants to enhance equipment reliability.

신규원전의 기기별 고장분석을 통한 발전정지유발기기 선정 (Selection of Single Point Vulnerability through the Failure Mode Effect Analysis of Equipment in Newly built Nuclear Power Plant)

  • 현진우;염동운;송태영
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.509-512
    • /
    • 2012
  • For decreasing an unexpected shutdown of Nuclear Power Plants, Korea Hydro & Nuclear Power co.(KHNP) has developed Single Point Vulnerability(SPV) of NPPs since 2008. SPV is the equipment that cause reactor shutdown & turbine trip or more than 50% power rundown due to its malfunction. Newly built Nuclear Power Plants need to develop the SPV list, so performed the job which analyse equipment failure effect for SPV selection for 1 year. To develop this, Failure Mode Effect Analysis(FMEA) and Fault Tree Analysis(FTA) methods are used. As results of this analysis, about 900 equipment are selected as SPV. Thereafter those are going to be applied to Nuclear Power Plants to enhance equipment reliability.

원전용 비상디젤발전기 국외 손상사례 분석에 관한 연구 (A Study on the Analysis of Failures Related to Emergency Diesel Generators in Overseas Nuclear Power Plants)

  • 장정환;김진성;정해동;조권회
    • 한국압력기기공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.32-37
    • /
    • 2009
  • The emergency diesel generator (EDG) in a nuclear power plant (NPP) shall start within 10 secondss and supply electrical power to engineered safety features within one minute and less if a loss of offsite power (LOOP), A design-basis event, or their combination occur. Each NPP has an EDG set consisting of two diesel generators for redundancy. In addition to the EDG set, an alternate Alternating Current Diesel Generator (AAC DG) is installed and shared by several units to cope with a station black out (SBO), i.e., loss of the offsite power concurrent with reactor trip and unavailability of the EDG set. The objective of this study is to analyze the failure data of emergency diesel generators reported in overseas nuclear power plants.

  • PDF

경수로 제어봉구동장치제어계통의 영점위상탐지기 성능개선에 관한 연구 (Study for improvement of zero-cross detector of control element drive mechanism control system in PWR)

  • 김병문;이병주;한상준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.609-611
    • /
    • 1996
  • Zero-Cross Detector makes pilot signal to control the power to CEDM(Control Element Drive Mechanism). Existing Zero-Cross Detectors has had a problem which can cause unexpected reactor trip resulted from fluctuating frequency of input signal coming from M/G Set. The existing Zero-Cross Detector can't work properly when power frequency is varying because it was designed to work under stable M/G Set operation, and produces wrong pilot signal and output voltage. In this report the Zero-Cross Detector is improved to resolve voltage fluctuating problem by using new devices such as digital noise filtering circuit, variable cycle compensator and alarm circuit. And through the performance verification it shows that new circuit is better than old one. If suggested detector is applied to plant, it is possible to use it under House Load Operation because stable voltage can be generated by new Zero-Cross Detector.

  • PDF

증기터빈 과속도 보호장치의 비교분석 (An Analysis and Comparison of Steam Turbine Overspeed Protectors)

  • 최인규;정창기;김종안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2260-2262
    • /
    • 2004
  • After steam turbines in power plant drives generator and maintains it at rated speed using high temperature and high pressure steam energy, they regulate the output of generator when synchronized in parallel with the power system. By the way, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is "how to limit the speed within its overspeed trip setpoint and escape from danger." For the purpose of it, there are various ways known. Some overspeed protection methods for steam turbines now being operating in korea are introduced in this paper.

  • PDF

Modelling of CANDU NPP Reactor Regulating System using CATHENA

  • Cho, Cheon-Hwey;Kim, Hee-Cheol;Park, Chul-Jin;Lee, Sang-Yong;A.C.D. Wright
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.579-585
    • /
    • 1996
  • A CATHENA model for the reactor regulating system is developed and tested independently. A CATHENA plant model is created by combining this model with the reference CATHENA model which has been developed to analyze a loss-of-coolant accident (LOCA) for the Wolsong 2 generating station. This model is intended to provide a trip coverage analysis capability. The CATHENA reactor regulating system model includes the demand power routine. the light water zone control absorbers, mechanical control absorbers and adjusters. The CATHENA model is tested for steady state at 103% full power. A postulated accident transient (small LOCA) was also tested. The results show that the control routines in CATHENA were set up properly.

  • PDF

증기터빈 밸브제어방식에 따른 과속도 제어 고찰 (A Study on Overspeed Control and Valve Position Control for Steam Turbine in Power Plants)

  • 최인규;우주희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1661-1662
    • /
    • 2008
  • After steam turbines in power plant drives generator and maintains it at rated speed using high temperature and high pressure steam energy, they regulate the output of generator when synchronized in parallel with the power system. By the way, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is "how to limit the speed within its overspeed trip setpoint and escape from danger." In order to implement this purpose, there are various ways different from valve position control. So, in this paper, the various methods for overspeed protection are introduced in comparison with valve position control.

  • PDF

역지밸브의 고장 원인 분석 (Analysis of Failure Causes for Check Valves)

  • 송석윤;유성연
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.607-612
    • /
    • 2005
  • Check valves playa vital role in the operation and protection of nuclear power plants. Check valves failure in nuclear power plants often lead to a plant transient or trip. An overview of the failure history of check valves needs to identify key area where resources can be best applied to further improve their reliability, and provide cost effective means for failure reduction. The analysis of historical failure data gives information on the populations of various types of check valves, the systems they are installed in, failure modes, effects, methods of detection, and the mechanisms of the failures. The results presented are based on information derived from operating records, nuclear industry reports, manufacturer supplied information. A majority of check valve failures are caused by improper application. Failure modes are identified for swing and lift check valves. Failures involving improper seating and valve disc stuck comprised the largest percentage of failures.

  • PDF

발전소 전자제어설비 환경시험에 관한 고찰 (An investigation of environmental tests for electric control system in power plants)

  • 정창기;이주현;류흥우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.550-554
    • /
    • 1997
  • It is important to select a reliable electronic control system in power plants because a trip of a power plant caused by malfunction of the control system can lead to a great deal of economic and social loss. In this paper. environmental test specifications for evaluating the reliability of the electronic control system were developed in order to select a reliable one. Also, the electronic control systems made by domestic manufacturers were tested based on these developed environmental test specifications.

  • PDF