• 제목/요약/키워드: Plant Recognition

검색결과 232건 처리시간 0.023초

Artificial Intelligence Plant Doctor: Plant Disease Diagnosis Using GPT4-vision

  • Yoeguang Hue;Jea Hyeoung Kim;Gang Lee;Byungheon Choi;Hyun Sim;Jongbum Jeon;Mun-Il Ahn;Yong Kyu Han;Ki-Tae Kim
    • 식물병연구
    • /
    • 제30권1호
    • /
    • pp.99-102
    • /
    • 2024
  • Integrated pest management is essential for controlling plant diseases that reduce crop yields. Rapid diagnosis is crucial for effective management in the event of an outbreak to identify the cause and minimize damage. Diagnosis methods range from indirect visual observation, which can be subjective and inaccurate, to machine learning and deep learning predictions that may suffer from biased data. Direct molecular-based methods, while accurate, are complex and time-consuming. However, the development of large multimodal models, like GPT-4, combines image recognition with natural language processing for more accurate diagnostic information. This study introduces GPT-4-based system for diagnosing plant diseases utilizing a detailed knowledge base with 1,420 host plants, 2,462 pathogens, and 37,467 pesticide instances from the official plant disease and pesticide registries of Korea. The AI plant doctor offers interactive advice on diagnosis, control methods, and pesticide use for diseases in Korea and is accessible at https://pdoc.scnu.ac.kr/.

이미지 인식 기술의 산업 적용 동향 연구 (A Study on the Industrial Application of Image Recognition Technology)

  • 송재민;이새봄;박아름
    • 한국콘텐츠학회논문지
    • /
    • 제20권7호
    • /
    • pp.86-96
    • /
    • 2020
  • 본 연구는 이미지 인식기술 서비스의 산업 적용 사례를 기반으로 인공지능이 이미지 인식기술에 어떠한 역할을 하고 있는지 살펴보았다. 이미지 인식 기술을 사용하여 위성사진을 인공지능으로 분석해 특정 국가의 원유 저장탱크의 산출 내역을 밝혀내거나, 사용자가 촬영하거나 다운로드한 이미지와 유사한 이미지나 제품을 검색해주기도 하며, 과일의 산출량을 정렬한다거나 식물의 질병을 탐지해 낼 수도 있다. 딥러닝과 신경망 알고리즘을 기반으로 사람의 나이, 성별, 기분까지도 인식할 수 있어 이미지 인식 기술이 다양한 산업에서 적용되고 있음을 확인하였다. 본 연구에서는 국내 및 해외의 이미지 인식 기술의 활용 사례를 살펴보는 것 뿐 아니라, 어떠한 형태로 산업에 적용되고 있는지 확인을 할 수 있다. 또한, 본 연구를 통하여 여러 산업에서 이미지 인식기술을 구현하고 적용하여 발전시킨 여러 성공 사례들을 중심으로 향후 연구의 방향성을 제시했으며, 향후 국내 이미지 인식 기술이 나아가야 할 방향을 고찰해 볼 수 있다.

식재 설계 지원 CAD 프로그램 개발 (The development of CAD progtram supporting planting design)

  • 윤홍범;김우성
    • 한국조경학회지
    • /
    • 제23권4호
    • /
    • pp.20-27
    • /
    • 1996
  • The main purpose of this research is to develop a program supporting landscape planting design on AutoCAD basis using AutoLISP and DCL language. Current CAD use in landscape architecture field is mainly focused on customizing plant symbols for supporting two dimensional drafting rather than three dimensional consideration. This program is composed of eight module a such as PLANT module for inserting plant symbols, LABEL module for labeling task, SIMULATION module for simulating plant growth and seasonal color variation, TABLE module for generating plant table automatically, BUILDING module, BLOCK module, UTILITY module for deleting, transforming, shading symbols and DB MANAGER module for manipulating data. Design automation ability using automatic object recognition technique in this program allows AutoCAD to be used as a design tool in addition to its main role as a drafting tool through supporting landscape designers to generate many alternatives in the early phase of design.

  • PDF

Deep Learning for Herbal Medicine Image Recognition: Case Study on Four-herb Product

  • Shin, Kyungseop;Lee, Taegyeom;Kim, Jinseong;Jun, Jaesung;Kim, Kyeong-Geun;Kim, Dongyeon;Kim, Dongwoo;Kim, Se Hee;Lee, Eun Jun;Hyun, Okpyung;Leem, Kang-Hyun;Kim, Wonnam
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.87-87
    • /
    • 2019
  • The consumption of herbal medicine and related products (herbal products) have increased in South Korea. At the same time the quality, safety, and efficacy of herbal products is being raised. Currently, the herbal products are standardized and controlled according to the requirements of the Korean Pharmacopoeia, the National Institute of Health and the Ministry of Public Health and Social Affairs. The validation of herbal products and their medicinal component is important, since many of these herbal products are composed of two or more medicinal plants. However, there are no tools to support the validation process. Interest in deep learning has exploded over the past decade, for herbal medicine using algorithms to achieve herb recognition, symptom related target prediction, and drug repositioning have been reported. In this study, individual images of four herbs (Panax ginseng C.A. Meyer, Atractylodes macrocephala Koidz, Poria cocos Wolf, Glycyrrhiza uralensis Fischer), actually sold in the market, were achieved. Certain image preprocessing steps such as noise reduction and resize were formatted. After the features are optimized, we applied GoogLeNet_Inception v4 model for herb image recognition. Experimental results show that our method achieved test accuracy of 95%. However, there are two limitations in the current study. Firstly, due to the relatively small data collection (100 images), the training loss is much lower than validation loss which possess overfitting problem. Secondly, herbal products are mostly in a mixture, the applied method cannot be reliable to detect a single herb from a mixture. Thus, further large data collection and improved object detection is needed for better classification.

  • PDF

영상처리 기법에 기반한 아날로그 및 디지틀 계기의 자동인식에 관한 연구 (A Study on Analog and Digital Meter Recognition Based on Image Processing Technique)

  • 김경호;진성일;이용범;이종민
    • 전자공학회논문지B
    • /
    • 제32B권9호
    • /
    • pp.1215-1230
    • /
    • 1995
  • The purpose of this paper is to build a computer vision system that endows an autonomous mobile robot the ability of automatic measuring of the analog and digital meters installed in nuclear power plant(NPP). This computer vision system takes a significant part in the organization of automatic surveillance and measurement system having the instruments and gadzets in NPP under automatic control situation. In the meter image captured by the camera, the meter area is sorted out using mainly the thresholding and the region labeling and the meter value recognition process follows. The positions and the angles of the needles in analog meter images are detected using the projection based method. In the case of digital meters, digits and points are extracted and finally recognized through the neural network classifier. To use available database containing relevant information about meters and to build fully automatic meter recognition system, the segmentation and recognition of the function-name in the meter printed around the meter area should be achieved for enhancing identification reliability. For thus, the function- name of the meter needs to be identified and furthermore the scale distributions and values are also required to be analyzed for building the more sophisticated system and making the meter recognition fully automatic.

  • PDF

여뀌과 식물 Polygonum setaceum의 형태적 변이 (Morphological Variation in Polygonum setaceum (Polygonaceae))

  • 박종욱
    • Journal of Plant Biology
    • /
    • 제34권3호
    • /
    • pp.177-183
    • /
    • 1991
  • Patterns of morphological variation in Polygonum setaceum Baldwin ex Elliott are examined, and the taxonomic significance of the varieties recognized by Fernald is reevaluated. The diagnostic characters used to differentiate the varieties in P. setaceum demonstrate virtually continuous variation, and broad geographic intergradation is recognized. Principal components analyses of major morphological characters also fail to separate the varieties. These results strongly suggest that recognition of var. setaceum, var. interjectum, and var. tonsum by Fernald is unwarranted.

  • PDF

Application of image processing to automated sewing system

  • Takagi, Yoichi;Kato, Masayasu;Yoshioka, Tatsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1742-1747
    • /
    • 1991
  • Since inspection, ID-code recognition, and pattern match processes requiring vision depend upon the high-grade human recognition capability, these processes have conventionally caused a bottle-neck in automatizing sewing system. However, the authors have recently developed the technology of inspecting the surface defects of textiles and recognizing ID-code by fully utilizing the image processing technology. In the ID-code recognition technology, the most difficult data given on patterns can be read as a result of developing the image processing technology and eliminating noises by using a special (fluorescent) ink. The inspection and pattern match technology was verified to be able to put into practical use through evaluation experiments in an experimental plant.

  • PDF

온라인 학습에서 머신러닝을 활용한 초등 4학년 식물 분류 학습의 적용 사례 연구 (A Case Study on the Application of Plant Classification Learning for 4th Grade Elementary School Using Machine Learning in Online Learning)

  • 신원섭;신동훈
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제40권1호
    • /
    • pp.66-80
    • /
    • 2021
  • This study is a case study that applies plant classification learning using machine learning to fourth graders in elementary school in online learning situations. In this study, a plant classification learning education program associated with 2015 revision science curriculum was developed by applying the Artificial Intelligence biological classification teaching Learning model. The study participants were 31 fourth graders who agreed to participate voluntarily. Plant classification learning using machine learning was applied six hours for three weeks. The results of this study are as follows. First, as a result of image analysis on artificial intelligence, participants were mainly aware of artificial intelligence as mechanical (27%), human (23%) and household goods (23%). Second, an artificial intelligence recognition survey by semantic discrimination found that artificial intelligence was recognized as smart, good, accurate, new, interesting, necessary, and diverse. Third, there was a difference between men and women in perception and emotion of artificial intelligence, and there was no difference in perception of the ability of artificial intelligence. Fourth, plant classification learning using machine learning in this study influenced changes in artificial intelligence perception. Fifth, plant classification learning using machine learning in this study had a positive effect on reasoning ability.

Deep Learning Methods for Recognition of Orchard Crops' Diseases

  • Sabitov, Baratbek;Biibsunova, Saltanat;Kashkaroeva, Altyn;Biibosunov, Bolotbek
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.257-261
    • /
    • 2022
  • Diseases of agricultural plants in recent years have spread greatly across the regions of the Kyrgyz Republic and pose a serious threat to the yield of many crops. The consequences of it can greatly affect the food security for an entire country. Due to force majeure, abnormal cases in climatic conditions, the annual incomes of many farmers and agricultural producers can be destroyed locally. Along with this, the rapid detection of plant diseases also remains difficult in many parts of the regions due to the lack of necessary infrastructure. In this case, it is possible to pave the way for the diagnosis of diseases with the help of the latest achievements due to the possibilities of feedback from the farmer - developer in the formation and updating of the database of sick and healthy plants with the help of advances in computer vision, developing on the basis of machine and deep learning. Currently, model training is increasingly used already on publicly available datasets, i.e. it has become popular to build new models already on trained models. The latter is called as transfer training and is developing very quickly. Using a publicly available data set from PlantVillage, which consists of 54,306 or NewPlantVillage with a data volumed with 87,356 images of sick and healthy plant leaves collected under controlled conditions, it is possible to build a deep convolutional neural network to identify 14 types of crops and 26 diseases. At the same time, the trained model can achieve an accuracy of more than 99% on a specially selected test set.